• Version:
  • 11.0 [archived version]
STRINGSTRING
FXYD2 FXYD2 ATP1A1 ATP1A1 ATP2A2 ATP2A2 ATP1A4 ATP1A4 FXYD1 FXYD1 ATP1B3 ATP1B3 ATP1A3 ATP1A3 ATP1B2 ATP1B2 PRKACA PRKACA ATP1A2 ATP1A2 ATP1B1 ATP1B1
"FXYD1" - Phospholemman in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FXYD1Phospholemman; Associates with and regulates the activity of the sodium/potassium-transporting ATPase (NKA) which transports Na(+) out of the cell and K(+) into the cell. Inhibits NKA activity in its unphosphorylated state and stimulates activity when phosphorylated. Reduces glutathionylation of the NKA beta-1 subunit ATP1B1, thus reversing glutathionylation-mediated inhibition of ATP1B1. Contributes to female sexual development by maintaining the excitability of neurons which secrete gonadotropin-releasing hormone (92 aa)    
Predicted Functional Partners:
ATP1A1
Sodium/potassium-transporting ATPase subunit alpha-1; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients; ATPase Na+/K+ transporting subunits (1023 aa)
       
  0.942
ATP1A2
Sodium/potassium-transporting ATPase subunit alpha-2; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily (1020 aa)
     
 
  0.936
ATP1B1
Sodium/potassium-transporting ATPase subunit beta-1; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane; ATPase Na+/K+ transporting subunits (303 aa)
     
  0.931
ATP1A3
Sodium/potassium-transporting ATPase subunit alpha-3; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily (1026 aa)
     
 
  0.914
ATP1A4
Sodium/potassium-transporting ATPase subunit alpha-4; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility; ATPase Na+/K+ transporting subunits (1029 aa)
         
  0.914
ATP1B2
Sodium/potassium-transporting ATPase subunit beta-2; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-2 subunit is not known; ATPase Na+/K+ transporting subunits (290 aa)
     
 
  0.913
ATP1B3
Sodium/potassium-transporting ATPase subunit beta-3; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known; ATPase Na+/K+ transporting subunits (279 aa)
         
  0.909
PRKACA
cAMP-dependent protein kinase catalytic subunit alpha; Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA and VASP. RORA is activated by phosphorylation. Required for glucose- mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the [...] (351 aa)
     
    0.858
FXYD2
Sodium/potassium-transporting ATPase subunit gamma; May be involved in forming the receptor site for cardiac glycoside binding or may modulate the transport function of the sodium ATPase; Belongs to the FXYD family (66 aa)
         
0.811
ATP2A2
Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11- induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic [...] (1042 aa)
     
 
  0.809
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]