• Version:
  • 11.0 [archived version]
STRINGSTRING
HSD3B2 HSD3B2 CYP1A1 CYP1A1 CYP1A2 CYP1A2 HSD3B1 HSD3B1 CYP3A4 CYP3A4 CYP2A6 CYP2A6 CYP3A7 CYP3A7 CYP2B6 CYP2B6 CYP26A1 CYP26A1 CYP3A5 CYP3A5 CYP4A11 CYP4A11
"CYP3A7" - Cytochrome P450 3A7 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CYP3A7Cytochrome P450 3A7; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (535 aa)    
Predicted Functional Partners:
CYP3A5
Cytochrome P450 3A5; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (502 aa)
   
0.969
CYP3A4
Cytochrome P450 3A4; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1’-hydroxylation and midazolam 4- hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2- exo-monooxygenase. The enzyme also hydroxylates etoposide. Catalyzes 4-beta-hydroxylation of cholesterol. May catalyze 25-hydroxylation of chol [...] (503 aa)
   
 
0.957
CYP1A1
Cytochrome P450 1A1; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (512 aa)
   
 
0.945
CYP2A6
Cytochrome P450 2A6; Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4- cineole 2-exo-monooxygenase. Possesses low phenacetin O- deethylation activity; Cytochrome P450 family 2 (494 aa)
   
 
0.941
CYP2B6
Cytochrome P450 2B6; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase (491 aa)
   
 
0.940
CYP1A2
Cytochrome P450 1A2; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes [...] (516 aa)
   
   
0.939
CYP4A11
Cytochrome P450 4A11; Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate, myristate and palmitate. Has little activity toward prostaglandins A1 and E1. Oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE); Cytochrome P450 family 4 (519 aa)
   
 
0.933
HSD3B2
3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 2; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids; Short chain dehydrogenase/reductase superfamily (372 aa)
       
  0.932
CYP26A1
Cytochrome P450 26A1; Plays a key role in retinoic acid metabolism. Acts on retinoids, including all-trans-retinoic acid (RA) and its stereoisomer 9-cis-RA. Capable of both 4-hydroxylation and 18- hydroxylation. Responsible for generation of several hydroxylated forms of RA, including 4-OH-RA, 4-oxo-RA and 18-OH-RA; Belongs to the cytochrome P450 family (497 aa)
   
   
0.929
HSD3B1
3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 1; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids. Efficiently catalyzes the transformation of pregnenolone to progesterone, 17-alpha-hydroxypregnenolone to 17- alpha-hydroxyprogesterone, DHEA to 4-androstenedione, dihydrotestosterone to 5-alpha-androstane-3 beta,17 beta-diol, dehydroepiandrosterone to [...] (373 aa)
       
  0.924
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]