• Version:
  • 11.0 [archived version]
STRINGSTRING
TRA2A TRA2A CLK3 CLK3 SRPK2 SRPK2 CLK2 CLK2 TRA2B TRA2B SRSF8 SRSF8 SRSF9 SRSF9 SRSF3 SRSF3 SRPK1 SRPK1 C1QBP C1QBP SREK1 SREK1
"SRSF8" - Serine/arginine-rich splicing factor 8 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SRSF8Serine/arginine-rich splicing factor 8; Involved in pre-mRNA alternative splicing; Serine and arginine rich splicing factors (282 aa)    
Predicted Functional Partners:
TRA2B
Transformer-2 protein homolog beta; Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre- mRNA; Belongs to the splicing factor SR family (288 aa)
   
 
0.869
SRSF9
Serine/arginine-rich splicing factor 9; Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10; Belongs to the splicing factor SR family (221 aa)
     
 
  0.856
SRPK1
SRSF protein kinase 1; Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Plays a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells and the reorganization of nuclear speckles during mitosis. Can influence additional steps of mRNA maturation, as well as other cellular activiti [...] (655 aa)
       
  0.840
C1QBP
Complement component 1 Q subcomponent-binding protein, mitochondrial; Is believed to be a multifunctional and multicompartmental protein involved in inflammation and infection processes, ribosome biogenesis, regulation of apoptosis, transcriptional regulation and pre-mRNA splicing. At the cell surface is thought to act as an endothelial receptor for plasma proteins of the complement and kallikrein-kinin cascades. Putative receptor for C1q; specifically binds to the globular "heads" of C1q thus inhibiting C1; may perform the receptor function through a complex with C1qR/CD93. In complex [...] (282 aa)
     
 
  0.819
SREK1
Splicing regulatory glutamine/lysine-rich protein 1; Participates in the regulation of alternative splicing by modulating the activity of other splice facors. Inhibits the splicing activity of SFRS1, SFRS2 and SFRS6. Augments the splicing activity of SFRS3 (By similarity); RNA binding motif containing (624 aa)
     
 
  0.777
SRSF3
Serine/arginine-rich splicing factor 3; Splicing factor that specifically promotes exon- inclusion during alternative splicing. Interaction with YTHDC1, a RNA-binding protein that recognizes and binds N6-methyladenosine (m6A)-containing RNAs, promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing. Also functions as export adapter involved in mRNA nuclear export such as of histone H2A. Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NXF1 pathway); enhances NXF1-NXT [...] (164 aa)
     
 
0.767
SRPK2
SRSF protein kinase 2; Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression. This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression. Phosphorylates ACIN1, and [...] (699 aa)
       
 
  0.757
TRA2A
Transformer-2 protein homolog alpha; Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing (282 aa)
   
 
0.757
CLK3
Dual specificity protein kinase CLK3; Dual specificity kinase acting on both serine/threonine and tyrosine-containing substrates. Phosphorylates serine- and arginine-rich (SR) proteins of the spliceosomal complex. May be a constituent of a network of regulatory mechanisms that enable SR proteins to control RNA splicing and can cause redistribution of SR proteins from speckles to a diffuse nucleoplasmic distribution. Phosphorylates SRSF1 and SRSF3. Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells; CDC like kinases (638 aa)
     
 
  0.752
CLK2
Dual specificity protein kinase CLK2; Dual specificity kinase acting on both serine/threonine and tyrosine-containing substrates. Phosphorylates serine- and arginine-rich (SR) proteins of the spliceosomal complex. May be a constituent of a network of regulatory mechanisms that enable SR proteins to control RNA splicing and can cause redistribution of SR proteins from speckles to a diffuse nucleoplasmic distribution. Acts as a suppressor of hepatic gluconeogenesis and glucose output by repressing PPARGC1A transcriptional activity on gluconeogenic genes via its phosphorylation. Phosphory [...] (499 aa)
     
 
  0.742
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]