• Version:
  • 11.0 [archived version]
STRINGSTRING
EGLN2 EGLN2 EGLN1 EGLN1 HECA HECA UNK UNK USP34 USP34 UBE2C UBE2C USP9X USP9X MAPKAP1 MAPKAP1 RPTOR RPTOR UBQLN1 UBQLN1 SHPRH SHPRH
"UNK" - RING finger protein unkempt homolog in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
UNKRING finger protein unkempt homolog; Sequence-specific RNA-binding protein which plays an important role in the establishment and maintenance of the early morphology of cortical neurons during embryonic development. Acts as a translation repressor and controls a translationally regulated cell morphology program to ensure proper structuring of the nervous system. Translational control depends on recognition of its binding element within target mRNAs which consists of a mandatory UAG trimer upstream of a U/A-rich motif. Associated with polysomes; Zinc fingers CCCH-type (810 aa)    
Predicted Functional Partners:
HECA
Headcase protein homolog; May play an important role in some human cancers. May be part of the regulatory mechanism in the development of epithelial tube networks such as the circulatory system and lungs (543 aa)
     
 
  0.920
USP34
Ubiquitin carboxyl-terminal hydrolase 34; Ubiquitin hydrolase that can remove conjugated ubiquitin from AXIN1 and AXIN2, thereby acting as a regulator of Wnt signaling pathway. Acts as an activator of the Wnt signaling pathway downstream of the beta-catenin destruction complex by deubiquitinating and stabilizing AXIN1 and AXIN2, leading to promote nuclear accumulation of AXIN1 and AXIN2 and positively regulate beta-catenin (CTNBB1)-mediated transcription. Recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precurso [...] (3546 aa)
     
 
  0.872
USP9X
Probable ubiquitin carboxyl-terminal hydrolase FAF-X; Deubiquitinase involved both in the processing of ubiquitin precursors and of ubiquitinated proteins. May therefore play an important regulatory role at the level of protein turnover by preventing degradation of proteins through the removal of conjugated ubiquitin. Essential component of TGF-beta/BMP signaling cascade. Regulates chromosome alignment and segregation in mitosis by regulating the localization of BIRC5/survivin to mitotic centromeres. Specifically hydrolyzes both ’Lys-29’- and ’Lys-33’-linked polyubiquitins chains. Spec [...] (2570 aa)
     
 
  0.864
RPTOR
Regulatory-associated protein of mTOR; Involved in the control of the mammalian target of rapamycin complex 1 (mTORC1) activity which regulates cell growth and survival, and autophagy in response to nutrient and hormonal signals; functions as a scaffold for recruiting mTORC1 substrates. mTORC1 is activated in response to growth factors or amino acids. Growth factor-stimulated mTORC1 activation involves a AKT1- mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase that potently activates the protein kinase activity of mTORC1. Amino acid-signaling to mTO [...] (1335 aa)
     
 
  0.842
MAPKAP1
Target of rapamycin complex 2 subunit MAPKAP1; Subunit of mTORC2, which regulates cell growth and survival in response to hormonal signals. mTORC2 is activated by growth factors, but, in contrast to mTORC1, seems to be nutrient- insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 ’Ser-473’ phosphorylation, which may facilitate the phosphorylation of the [...] (522 aa)
       
 
  0.839
SHPRH
E3 ubiquitin-protein ligase SHPRH; E3 ubiquitin-protein ligase involved in DNA repair. Upon genotoxic stress, accepts ubiquitin from the UBE2N-UBE2V2 E2 complex and transfers it to ’Lys-164’ of PCNA which had been monoubiquitinated by UBE2A/B-RAD18, promoting the formation of non-canonical poly-ubiquitin chains linked through ’Lys-63’; Belongs to the SNF2/RAD54 helicase family (1683 aa)
     
   
  0.835
EGLN2
Egl nine homolog 2; Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF2A. Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Under hypoxic conditions, the hydroxylation reaction is [...] (407 aa)
     
 
  0.831
EGLN1
Egl nine homolog 1; Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF1B. Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Under hypoxic conditions, the hydroxylation reaction is [...] (426 aa)
     
 
  0.831
UBE2C
Ubiquitin-conjugating enzyme E2 C; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 11’- and ’Lys-48’-linked polyubiquitination. Acts as an essential factor of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated ubiquitin ligase that controls progression through mitosis. Acts by initiating ’Lys-11’-linked polyubiquitin chains on APC/C substrates, leading to the degradation of APC/C substrates by the proteasome and promoting mitotic exit; Ubiquitin conjugating enzymes E2 (179 aa)
     
      0.829
UBQLN1
Ubiquilin-1; Plays an important role in the regulation of different protein degradation mechanisms and pathways including ubiquitin- proteasome system (UPS), autophagy and endoplasmic reticulum- associated protein degradation (ERAD) pathway. Mediates the proteasomal targeting of misfolded or accumulated proteins for degradation by binding (via UBA domain) to their polyubiquitin chains and by interacting (via ubiquitin-like domain) with the subunits of the proteasome. Plays a role in the ERAD pathway via its interaction with ER-localized proteins UBXN4, VCP and HERPUD1 and may form a li [...] (589 aa)
     
 
  0.826
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]