• Version:
  • 11.0 [archived version]
STRINGSTRING
UQCRFS1 UQCRFS1 COX6C COX6C MT-CO2 MT-CO2 MT-CO3 MT-CO3 COX7C COX7C COX4I1 COX4I1 COX5B COX5B COX6B1 COX6B1 MT-CO1 MT-CO1 COX5A COX5A CYCS CYCS
"COX4I1" - Cytochrome c oxidase subunit 4 isoform 1, mitochondrial in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
COX4I1Cytochrome c oxidase subunit 4 isoform 1, mitochondrial; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (169 aa)    
Predicted Functional Partners:
MT-CO2
Cytochrome c oxidase subunit 2; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1 (227 aa)
     
  0.999
COX5B
Cytochrome c oxidase subunit 5B, mitochondrial; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (129 aa)
     
  0.999
COX5A
Cytochrome c oxidase subunit 5A, mitochondrial; This is the heme A-containing chain of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (150 aa)
     
  0.999
COX6C
Cytochrome c oxidase subunit 6C; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (75 aa)
     
  0.999
CYCS
Cytochrome c; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain (105 aa)
     
  0.998
COX7C
Cytochrome c oxidase subunit 7C, mitochondrial; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (63 aa)
     
  0.996
COX6B1
Cytochrome c oxidase subunit 6B1; Connects the two COX monomers into the physiological dimeric form; Mitochondrial complex IV- cytochrome c oxidase subunits (86 aa)
     
  0.996
MT-CO1
Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B (513 aa)
     
  0.992
MT-CO3
Cytochrome c oxidase subunit 3; Subunits I, II and III form the functional core of the enzyme complex; Mitochondrial complex IV- cytochrome c oxidase subunits (261 aa)
     
  0.989
UQCRFS1
Cytochrome b-c1 complex subunit Rieske, mitochondrial; Cytochrome b-c1 complex subunit Rieske, mitochondrial- Component of the mitochondrial ubiquinol-cytochrome c reductase complex dimer (complex III dimer), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. Incorporation of UQCRFS1 is the penultimate step in complex III assembly (By similarity) (274 aa)
     
  0.989
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]