• Version:
  • 11.0 [archived version]
STRINGSTRING
CLDN23 CLDN23 CLDN10 CLDN10 CLDN2 CLDN2 CLDN16 CLDN16 CLDN18 CLDN18 OCLN OCLN CLDN15 CLDN15 CLDN1 CLDN1 CLDN11 CLDN11 CLDN12 CLDN12 TJP1 TJP1
"CLDN2" - Claudin-2 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CLDN2Claudin-2; Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium- independent cell-adhesion activity; Claudins (230 aa)    
Predicted Functional Partners:
CLDN12
Claudin-12; Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium- independent cell-adhesion activity; Claudins (244 aa)
     
 
  0.977
OCLN
Occludin; May play a role in the formation and regulation of the tight junction (TJ) paracellular permeability barrier. It is able to induce adhesion when expressed in cells lacking tight junctions; Protein phosphatase 1 regulatory subunits (522 aa)
     
 
  0.944
TJP1
Tight junction protein ZO-1; The N-terminal may be involved in transducing a signal required for tight junction assembly, while the C-terminal may have specific properties of tight junctions. The alpha domain might be involved in stabilizing junctions. Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells; Belongs to the MAGUK family (1748 aa)
       
 
  0.934
CLDN16
Claudin-16; Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium- independent cell-adhesion activity. Involved in paracellular magnesium reabsorption. Required for a selective paracellular conductance. May form, alone or in partnership with other constituents, an intercellular pore permitting paracellular passage of magnesium and calcium ions down their electrochemical gradients. Alternatively, it could be a sensor of magnesium concentration that could alter paracellular permeability mediated by other factors; Claudins (305 aa)
         
0.926
CLDN23
Claudin-23; Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium- independent cell-adhesion activity; Claudins (292 aa)
     
 
0.917
CLDN11
Claudin-11; Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium- independent cell-adhesion activity; Claudins (207 aa)
         
0.917
CLDN15
Claudin-15; Claudins function as major constituents of the tight junction complexes that regulate the permeability of epithelia. While some claudin family members function as impermeable barriers, others mediate the permeability to ions and small molecules. Often, several claudin family members are coexpressed and interact with each other, and this determines the overall permeability. CLDN15 forms tight junctions that mediate the paracellular transport of small monovalent cations along a concentration gradient, due to selective permeability for Na(+), Li(+) and K(+) ions, but selects a [...] (228 aa)
     
 
0.916
CLDN1
Claudin-1; Claudins function as major constituents of the tight junction complexes that regulate the permeability of epithelia. While some claudin family members play essential roles in the formation of impermeable barriers, others mediate the permeability to ions and small molecules. Often, several claudin family members are coexpressed and interact with each other, and this determines the overall permeability. CLDN1 is required to prevent the paracellular diffusion of small molecules through tight junctions in the epidermis and is required for the normal barrier function of the skin. [...] (211 aa)
     
 
0.914
CLDN10
Claudin-10; Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium- independent cell-adhesion activity. May form permselective paracellular pores; isoform 1 appears to create pores preferentially permeable to cations and isoform 2 for anions. Plays a key role in controlling cation selectivity and transport in the thick ascending limb (TAL) of Henle’s loop in kidney; Belongs to the claudin family (228 aa)
         
0.914
CLDN18
Claudin-18; Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium- independent cell-adhesion activity; Belongs to the claudin family (261 aa)
         
0.914
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]