• Version:
  • 11.0 [archived version]
STRINGSTRING
EIF4B EIF4B EIF4EBP1 EIF4EBP1 EIF4A2 EIF4A2 EIF4G3 EIF4G3 EIF4G1 EIF4G1 RPS6 RPS6 EIF4E EIF4E MKNK1 MKNK1 MTOR MTOR EIF4A1 EIF4A1 NCBP1 NCBP1
"EIF4E" - Eukaryotic translation initiation factor 4E in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
EIF4EEukaryotic translation initiation factor 4E (248 aa)    
Predicted Functional Partners:
EIF4G1
Eukaryotic translation initiation factor 4 gamma 1; Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5’-terminal secondary structure and recruitment of mRNA to the ribosome; Parkinson disease associated genes (1606 aa)
     
  0.999
EIF4EBP1
Eukaryotic translation initiation factor 4E-binding protein 1; Repressor of translation initiation that regulates EIF4E activity by preventing its assembly into the eIF4F complex- hypophosphorylated form competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repress translation. In contrast, hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation. Mediates the regulation of protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase and mTORC1 pathways (118 aa)
       
  0.999
EIF4A1
Eukaryotic initiation factor 4A-I; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5’-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon; Belongs to the DEAD box helicase family. eIF4A subfamily (406 aa)
     
  0.999
EIF4G3
Eukaryotic translation initiation factor 4 gamma 3; Probable component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5’-terminal secondary structure and recruitment of mRNA to the ribosome. Thought to be a functional homolog of EIF4G1 (1621 aa)
     
  0.999
EIF4A2
Eukaryotic initiation factor 4A-II; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5’-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon; DEAD-box helicases (407 aa)
     
  0.999
EIF4B
Eukaryotic translation initiation factor 4B; Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5’- terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F (616 aa)
     
  0.996
NCBP1
Nuclear cap-binding protein subunit 1; Component of the cap-binding complex (CBC), which binds cotranscriptionally to the 5’-cap of pre-mRNAs and is involved in various processes such as pre-mRNA splicing, translation regulation, nonsense-mediated mRNA decay, RNA-mediated gene silencing (RNAi) by microRNAs (miRNAs) and mRNA export. The CBC complex is involved in mRNA export from the nucleus via its interaction with ALYREF/THOC4/ALY, leading to the recruitment of the mRNA export machinery to the 5’-end of mRNA and to mRNA export in a 5’ to 3’ direction through the nuclear pore. The CBC [...] (790 aa)
     
  0.995
RPS6
40S ribosomal protein S6; May play an important role in controlling cell growth and proliferation through the selective translation of particular classes of mRNA; S ribosomal proteins (249 aa)
     
  0.995
MKNK1
MAP kinase-interacting serine/threonine-protein kinase 1; May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7- methylguanosine-containing mRNA cap; Mitogen-activated protein kinase-activated protein kinases (465 aa)
       
  0.995
MTOR
Serine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF [...] (2549 aa)
     
  0.994
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]