• Version:
  • 11.0 [archived version]
STRINGSTRING
DYNLL2 DYNLL2 GPHN GPHN GLRB GLRB GABRA1 GABRA1 MOCS2 MOCS2 GLRA3 GLRA3 GLRA1 GLRA1 MOCS1 MOCS1 GLRA4 GLRA4 GLRA2 GLRA2 ARHGEF9 ARHGEF9
"GPHN" - Gephyrin in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GPHNGephyrin; Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to anchor the inhibitory glycine receptor (GLYR) to subsynaptic microtubules. Catalyzes two steps in the biosynthesis of the molybdenum cofactor. In the first step, molybdopterin is adenylated. Subsequently, molybdate is inserted into adenylated molybdopterin and AMP is released; In the C-terminal section; belongs to the MoeA family (769 aa)    
Predicted Functional Partners:
GLRB
Glycine receptor subunit beta; Glycine receptors are ligand-gated chloride channels. GLRB does not form ligand-gated ion channels by itself, but is part of heteromeric ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Heteropentameric channels composed of GLRB and GLRA1 are activated by lower glycine levels than homopentameric GLRA1. Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents (497 aa)
       
 
  0.997
MOCS2
Molybdopterin synthase catalytic subunit; Catalytic subunit of the molybdopterin synthase complex, a complex that catalyzes the conversion of precursor Z into molybdopterin. Acts by mediating the incorporation of 2 sulfur atoms from thiocarboxylated MOCS2A into precursor Z to generate a dithiolene group; Belongs to the MoaE family. MOCS2B subfamily (188 aa)
 
 
  0.993
ARHGEF9
Rho guanine nucleotide exchange factor 9; Acts as guanine nucleotide exchange factor (GEF) for CDC42. Promotes formation of GPHN clusters; Pleckstrin homology domain containing (516 aa)
     
 
  0.981
GLRA1
Glycine receptor subunit alpha-1; Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Channel opening is also triggered by taurine and beta-alanine. Channel characteristics depend on the subunit composition; heteropentameric channels are activated by lower glycine levels and display faster desensitization. Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Channel activity is potentiated by ethanol. Potentiation of channel activity by intoxic [...] (457 aa)
       
 
  0.972
GLRA4
Glycine receptor subunit alpha-4; Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Channel opening is also triggered by taurine and beta-alanine. Plays a role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents (417 aa)
     
 
  0.972
GLRA2
Glycine receptor subunit alpha-2; Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Channel opening is also triggered by taurine and beta-alanine. Plays a role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Plays a role in cellular responses to ethanol (452 aa)
     
 
  0.972
GLRA3
Glycine receptor subunit alpha-3; Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Channel characteristics depend on the subunit composition; heteropentameric channels display faster channel closure (By similarity). Plays an important role in the down-regulation of neuronal excitability (By similarity). Contributes to the generation of inhibitory postsynaptic currents (By similarity). Contributes to increased pain perception in response to increased prostaglandin E2 levels (By similarity). Plays a role in cellular responses to [...] (464 aa)
       
 
  0.971
MOCS1
Molybdenum cofactor biosynthesis protein 1; Isoform MOCS1A and isoform MOCS1B probably form a complex that catalyzes the conversion of 5’-GTP to cyclic pyranopterin monophosphate (cPMP). MOCS1A catalyzes the cyclization of GTP to (8S)-3’,8-cyclo-7,8-dihydroguanosine 5’- triphosphate and MOCS1B catalyzes the subsequent conversion of (8S)-3’,8-cyclo-7,8-dihydroguanosine 5’-triphosphate to cPMP; In the N-terminal section; belongs to the radical SAM superfamily. MoaA family (385 aa)
 
 
  0.966
GABRA1
Gamma-aminobutyric acid receptor subunit alpha-1; Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand- gated chloride channel (By similarity); Gamma-aminobutyric acid type A receptor subunits (456 aa)
     
  0.961
DYNLL2
Dynein light chain 2, cytoplasmic; Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in changing or maintaining the spatial distribution of cytoskeletal structures (By similarity); Belongs to the dynein light chain family (89 aa)
     
 
  0.961
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]