• Version:
  • 11.0 [archived version]
STRINGSTRING
GPR84 GPR84 LPAR1 LPAR1 CXCL17 CXCL17 AADAT AADAT CAPN10 CAPN10 GPR35 GPR35 KMO KMO WDR64 WDR64 ATPIF1 ATPIF1 DCK DCK KTI12 KTI12
"GPR35" - G-protein coupled receptor 35 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GPR35G-protein coupled receptor 35; Acts as a receptor for kynurenic acid, an intermediate in the tryptophan metabolic pathway. The activity of this receptor is mediated by G-proteins that elicit calcium mobilization and inositol phosphate production through G(qi/o) proteins (340 aa)    
Predicted Functional Partners:
ATPIF1
ATPase inhibitor, mitochondrial; Endogenous F(1)F(o)-ATPase inhibitor limiting ATP depletion when the mitochondrial membrane potential falls below a threshold and the F(1)F(o)-ATP synthase starts hydrolyzing ATP to pump protons out of the mitochondrial matrix. Required to avoid the consumption of cellular ATP when the F(1)F(o)-ATP synthase enzyme acts as an ATP hydrolase. Indirectly acts as a regulator of heme synthesis in erythroid tissues- regulates heme synthesis by modulating the mitochondrial pH and redox potential, allowing FECH to efficiently catalyze the incorporation of iron i [...] (106 aa)
       
      0.873
CXCL17
C-X-C motif chemokine 17; Chemokine that acts as chemoattractant for monocytes, macrophages and dendritic cells. Plays a role in angiogenesis and possibly in the development of tumors. Acts as an anti-inflammatory in the stomach. May play a role in the innate defense against infections. Activates the C-X-C chemokine receptor GPR35 to induce a rapid and transient rise in the level of intracellular calcium ions (119 aa)
           
  0.734
CAPN10
Calpain-10; Calcium-regulated non-lysosomal thiol-protease which catalyzes limited proteolysis of substrates involved in cytoskeletal remodeling and signal transduction. May play a role in insulin-stimulated glucose uptake; Belongs to the peptidase C2 family (672 aa)
           
  0.711
KTI12
KTI12 chromatin associated homolog (354 aa)
       
      0.689
GPR84
G-protein coupled receptor 84; Receptor for medium-chain free fatty acid (FFA) with carbon chain lengths of C9 to C14. Capric acid (C10-0), undecanoic acid (C11-0) and lauric acid (C12-0) are the most potent agonists. Not activated by short-chain and long-chain saturated and unsaturated FFAs. Activation by medium-chain free fatty acid is coupled to a pertussis toxin sensitive G(i/o) protein pathway. May have important roles in processes from fatty acid metabolism to regulation of the immune system (396 aa)
           
  0.651
KMO
Kynurenine 3-monooxygenase; Catalyzes the hydroxylation of L-kynurenine (L-Kyn) to form 3-hydroxy-L-kynurenine (L-3OHKyn). Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis and apoptosis during brain development. Quinolinic acid may also affect NMDA receptor signaling in pancreatic beta cells, osteoblasts, myocardial cells, and the gastrointestinal tract (486 aa)
           
  0.621
AADAT
Kynurenine/alpha-aminoadipate aminotransferase, mitochondrial; Transaminase with broad substrate specificity. Has transaminase activity towards aminoadipate, kynurenine, methionine and glutamate. Shows activity also towards tryptophan, aspartate and hydroxykynurenine. Accepts a variety of oxo-acids as amino- group acceptors, with a preference for 2-oxoglutarate, 2- oxocaproic acid, phenylpyruvate and alpha-oxo-gamma-methiol butyric acid. Can also use glyoxylate as amino-group acceptor (in vitro) (429 aa)
           
  0.608
LPAR1
Lysophosphatidic acid receptor 1; Receptor for lysophosphatidic acid (LPA). Plays a role in the reorganization of the actin cytoskeleton, cell migration, differentiation and proliferation, and thereby contributes to the responses to tissue damage and infectious agents. Activates downstream signaling cascades via the G(i)/G(o), G(12)/G(13), and G(q) families of heteromeric G proteins. Signaling inhibits adenylyl cyclase activity and decreases cellular cAMP levels. Signaling triggers an increase of cytoplasmic Ca(2+) levels. Activates RALA; this leads to the activation of phospholipase C [...] (364 aa)
           
  0.563
WDR64
WD repeat-containing protein 64; WD repeat domain containing (1081 aa)
           
  0.556
DCK
Deoxycytidine kinase; Required for the phosphorylation of the deoxyribonucleosides deoxycytidine (dC), deoxyguanosine (dG) and deoxyadenosine (dA). Has broad substrate specificity, and does not display selectivity based on the chirality of the substrate. It is also an essential enzyme for the phosphorylation of numerous nucleoside analogs widely employed as antiviral and chemotherapeutic agents; Belongs to the DCK/DGK family (260 aa)
           
  0.547
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]