• Version:
  • 11.0 [archived version]
STRINGSTRING
XPO5 XPO5 ILF3 ILF3 ELAVL1 ELAVL1 HNRNPA1 HNRNPA1 CDC5L CDC5L ILF2 ILF2 HNRNPK HNRNPK PTBP1 PTBP1 HNRNPL HNRNPL HNRNPH1 HNRNPH1 HNRNPA2B1 HNRNPA2B1
"ILF3" - Interleukin enhancer-binding factor 3 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ILF3Interleukin enhancer-binding factor 3; RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back- splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs. As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Upon viral infection, ILF3 accumulates in the cytoplasm and participates i [...] (898 aa)    
Predicted Functional Partners:
ILF2
Interleukin enhancer-binding factor 2; Appears to function predominantly as a heterodimeric complex with ILF3. This complex may regulate transcription of the IL2 gene during T-cell activation. It can also promote the formation of stable DNA-dependent protein kinase holoenzyme complexes on DNA. Essential for the efficient reshuttling of ILF3 (isoform 1 and isoform 2) into the nucleus (390 aa)
     
 
0.992
HNRNPL
Heterogeneous nuclear ribonucleoprotein L; Splicing factor binding to exonic or intronic sites and acting as either an activator or repressor of exon inclusion. Exhibits a binding preference for CA-rich elements. Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and associated with most nascent transcripts. Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter; RNA binding motif containing (589 aa)
     
 
  0.984
CDC5L
Cell division cycle 5-like protein; DNA-binding protein involved in cell cycle control. May act as a transcription activator. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR); Myb/SANT domain containing (802 aa)
     
 
  0.983
HNRNPH1
Heterogeneous nuclear ribonucleoprotein H; This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG); RNA binding motif containing (449 aa)
     
 
  0.977
HNRNPA2B1
Heterogeneous nuclear ribonucleoproteins A2/B1; Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non- random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs. Forms hnRNP particles with at least 20 other different hnRNP and h [...] (353 aa)
     
 
  0.974
HNRNPA1
Heterogeneous nuclear ribonucleoprotein A1; Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. May bind to specific miRNA hairpins; RNA binding motif containing (372 aa)
     
 
  0.973
ELAVL1
ELAV-like protein 1; RNA-binding protein that binds to the 3’-UTR region of mRNAs and increases their stability. Involved in embryonic stem cells (ESCs) differentiation- preferentially binds mRNAs that are not methylated by N6-methyladenosine (m6A), stabilizing them, promoting ESCs differentiation (By similarity). Binds to poly-U elements and AU-rich elements (AREs) in the 3’-UTR of target mRNAs. Binds avidly to the AU-rich element in FOS and IL3/interleukin-3 mRNAs. In the case of the FOS AU-rich element, binds to a core element of 27 nucleotides that contain AUUUA, AUUUUA, and AUUUUU [...] (326 aa)
     
   
  0.972
XPO5
Exportin-5; Mediates the nuclear export of proteins bearing a double-stranded RNA binding domain (dsRBD) and double-stranded RNAs (cargos). XPO5 in the nucleus binds cooperatively to the RNA and to the GTPase Ran in its active GTP-bound form. Proteins containing dsRBDs can associate with this trimeric complex through the RNA. Docking of this complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause disassembly of [...] (1204 aa)
     
 
  0.971
PTBP1
Polypyrimidine tract-binding protein 1; Plays a role in pre-mRNA splicing and in the regulation of alternative splicing events. Activates exon skipping of its own pre-mRNA during muscle cell differentiation. Binds to the polypyrimidine tract of introns. May promote RNA looping when bound to two separate polypyrimidine tracts in the same pre-mRNA. May promote the binding of U2 snRNP to pre-mRNA. Cooperates with RAVER1 to modulate switching between mutually exclusive exons during maturation of the TPM1 pre-mRNA. Represses the splicing of MAPT/Tau exon 10. In case of infection by picornav [...] (557 aa)
     
   
  0.970
HNRNPK
Heterogeneous nuclear ribonucleoprotein K; One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single- stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription [...] (464 aa)
     
 
  0.969
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]