• Version:
  • 11.0 [archived version]
STRINGSTRING
EIF4A1 EIF4A1 EIF4E EIF4E EIF4G3 EIF4G3 EIF4E3 EIF4E3 EIF4G1 EIF4G1 EIF4G2 EIF4G2 EIF4A3 EIF4A3 EIF4E2 EIF4E2 ARIH1 ARIH1 ISG15 ISG15 EIF4A2 EIF4A2
"EIF4E3" - Eukaryotic translation initiation factor 4E type 3 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
EIF4E3Eukaryotic translation initiation factor 4E type 3; Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis. May act as an inhibitor of EIF4E1 activity (By similarity) (224 aa)    
Predicted Functional Partners:
EIF4G1
Eukaryotic translation initiation factor 4 gamma 1; Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5’-terminal secondary structure and recruitment of mRNA to the ribosome; Parkinson disease associated genes (1606 aa)
     
  0.988
EIF4G3
Eukaryotic translation initiation factor 4 gamma 3; Probable component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5’-terminal secondary structure and recruitment of mRNA to the ribosome. Thought to be a functional homolog of EIF4G1 (1621 aa)
     
  0.973
EIF4A1
Eukaryotic initiation factor 4A-I; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5’-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon; Belongs to the DEAD box helicase family. eIF4A subfamily (406 aa)
       
  0.964
EIF4G2
Eukaryotic translation initiation factor 4 gamma 2; Appears to play a role in the switch from cap-dependent to IRES-mediated translation during mitosis, apoptosis and viral infection. Cleaved by some caspases and viral proteases (907 aa)
     
  0.959
EIF4A2
Eukaryotic initiation factor 4A-II; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5’-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon; DEAD-box helicases (407 aa)
       
  0.952
EIF4E
Eukaryotic translation initiation factor 4E (248 aa)
         
0.925
EIF4E2
Eukaryotic translation initiation factor 4E type 2; Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation. Acts as a repressor of translation initiation. In contrast to EIF4E, it is unable to bind eIF4G (EIF4G1, EIF4G2 or EIF4G3), suggesting that it acts by competing with EIF4E and block assembly of eIF4F at the cap (By similarity) (245 aa)
     
 
0.921
ARIH1
E3 ubiquitin-protein ligase ARIH1; E3 ubiquitin-protein ligase, which catalyzes ubiquitination of target proteins together with ubiquitin- conjugating enzyme E2 UBE2L3. Acts as an atypical E3 ubiquitin-protein ligase by working together with cullin-RING ubiquitin ligase (CRL) complexes and initiating ubiquitination of CRL substrates- associates with CRL complexes and specifically mediates addition of the first ubiquitin on CRLs targets. The initial ubiquitin is then elongated by CDC34/UBE2R1 and UBE2R2. E3 ubiquitin-protein ligase activity is activated upon binding to neddylated cullin [...] (557 aa)
     
 
  0.914
EIF4A3
Eukaryotic initiation factor 4A-III; ATP-dependent RNA helicase. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all s [...] (411 aa)
       
  0.913
ISG15
Ubiquitin-like protein ISG15; Ubiquitin-like protein which plays a key role in the innate immune response to viral infection either via its conjugation to a target protein (ISGylation) or via its action as a free or unconjugated protein. ISGylation involves a cascade of enzymatic reactions involving E1, E2, and E3 enzymes which catalyze the conjugation of ISG15 to a lysine residue in the target protein. Its target proteins include IFIT1, MX1/MxA, PPM1B, UBE2L6, UBA7, CHMP5, CHMP2A, CHMP4B and CHMP6. Can also isgylate- EIF2AK2/PKR which results in its activation, DDX58/RIG-I which inhib [...] (165 aa)
     
 
  0.906
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]