• Version:
  • 11.0 [archived version]
STRINGSTRING
AKR1A1 AKR1A1 ADH5 ADH5 LTA4H LTA4H TXN TXN TXNRD1 TXNRD1 PTGR1 PTGR1 SULT4A1 SULT4A1 SRXN1 SRXN1 PRDX6 PRDX6 BPIFB2 BPIFB2 YLPM1 YLPM1
"PTGR1" - Prostaglandin reductase 1 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PTGR1Prostaglandin reductase 1; Functions as 15-oxo-prostaglandin 13-reductase and acts on 15-oxo-PGE1, 15-oxo-PGE2 and 15-oxo-PGE2-alpha. Has no activity towards PGE1, PGE2 and PGE2-alpha (By similarity). Catalyzes the conversion of leukotriene B4 into its biologically less active metabolite, 12-oxo-leukotriene B4. This is an initial and key step of metabolic inactivation of leukotriene B4 (329 aa)    
Predicted Functional Partners:
PRDX6
Peroxiredoxin-6; Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Can reduce H(2)O(2) and short chain organic, fatty acid, and phospholipid hydroperoxides. Also has phospholipase activity, and can therefore either reduce the oxidized sn-2 fatty acyl grup of phospholipids (peroxidase activity) or hydrolyze the sn-2 ester bond of phospholipids (phospholipase activity). These activities are dependent on binding to phospholipids at acidic pH and to oxidized phospholipds at cytosolic pH. Plays a role [...] (224 aa)
     
 
  0.691
ADH5
Alcohol dehydrogenase class-3; Class-III ADH is remarkably ineffective in oxidizing ethanol, but it readily catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione; Belongs to the zinc-containing alcohol dehydrogenase family. Class-III subfamily (374 aa)
     
 
  0.642
SRXN1
Sulfiredoxin-1; Contributes to oxidative stress resistance by reducing cysteine-sulfinic acid formed under exposure to oxidants in the peroxiredoxins PRDX1, PRDX2, PRDX3 and PRDX4. Does not act on PRDX5 or PRDX6. May catalyze the reduction in a multi-step process by acting both as a specific phosphotransferase and a thioltransferase; Belongs to the sulfiredoxin family (137 aa)
     
   
  0.637
LTA4H
Leukotriene A-4 hydrolase; Epoxide hydrolase that catalyzes the final step in the biosynthesis of the proinflammatory mediator leukotriene B4. Has also aminopeptidase activity; M1 metallopeptidases (611 aa)
     
   
  0.590
BPIFB2
BPI fold containing family B member 2; Belongs to the BPI/LBP/Plunc superfamily. BPI/LBP family (458 aa)
           
  0.556
AKR1A1
Alcohol dehydrogenase [NADP(+)]; Catalyzes the NADPH-dependent reduction of a variety of aromatic and aliphatic aldehydes to their corresponding alcohols. Catalyzes the reduction of mevaldate to mevalonic acid and of glyceraldehyde to glycerol. Has broad substrate specificity. In vitro substrates include succinic semialdehyde, 4- nitrobenzaldehyde, 1,2-naphthoquinone, methylglyoxal, and D- glucuronic acid. Plays a role in the activation of procarcinogens, such as polycyclic aromatic hydrocarbon trans-dihydrodiols, and in the metabolism of various xenobiotics and drugs, including the an [...] (325 aa)
   
 
  0.536
TXNRD1
Thioredoxin reductase 1, cytoplasmic; Isoform 1 may possess glutaredoxin activity as well as thioredoxin reductase activity and induces actin and tubulin polymerization, leading to formation of cell membrane protrusions. Isoform 4 enhances the transcriptional activity of estrogen receptors alpha and beta while isoform 5 enhances the transcriptional activity of the beta receptor only. Isoform 5 also mediates cell death induced by a combination of interferon-beta and retinoic acid; Glutaredoxin domain containing (649 aa)
     
   
  0.510
TXN
Thioredoxin; Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. Plays a role in the reversible S-nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity. Induces the FOS/JUN AP-1 DNA-binding activity in ionizing radiation (IR) cells through its oxidation/reduction status and stimulates A [...] (105 aa)
     
   
  0.506
SULT4A1
Sulfotransferase 4A1; Atypical sulfotransferase family member with very low affinity for 3’-phospho-5’-adenylyl sulfate (PAPS) and very low catalytic activity towards L-triiodothyronine, thyroxine, estrone, p-nitrophenol, 2-naphthylamine, and 2-beta-naphthol. May have a role in the metabolism of drugs and neurotransmitters in the CNS; Sulfotransferases, cytosolic (284 aa)
           
  0.505
YLPM1
YLP motif-containing protein 1; Plays a role in the reduction of telomerase activity during differentiation of embryonic stem cells by binding to the core promoter of TERT and controlling its down-regulation; Protein phosphatase 1 regulatory subunits (2146 aa)
           
  0.495
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]