• Version:
  • 11.0 [archived version]
STRINGSTRING
PABPC1 PABPC1 EIF4E3 EIF4E3 EIF4E EIF4E EIF1 EIF1 EIF4G1 EIF4G1 EIF4G2 EIF4G2 EIF4G3 EIF4G3 EIF4A1 EIF4A1 EIF4E2 EIF4E2 EIF3A EIF3A EIF4A2 EIF4A2
"EIF4G3" - Eukaryotic translation initiation factor 4 gamma 3 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
EIF4G3Eukaryotic translation initiation factor 4 gamma 3; Probable component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5’-terminal secondary structure and recruitment of mRNA to the ribosome. Thought to be a functional homolog of EIF4G1 (1621 aa)    
Predicted Functional Partners:
EIF4A2
Eukaryotic initiation factor 4A-II; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5’-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon; DEAD-box helicases (407 aa)
     
  0.999
EIF4E
Eukaryotic translation initiation factor 4E (248 aa)
     
  0.999
EIF4A1
Eukaryotic initiation factor 4A-I; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5’-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon; Belongs to the DEAD box helicase family. eIF4A subfamily (406 aa)
     
  0.998
EIF4G1
Eukaryotic translation initiation factor 4 gamma 1; Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5’-terminal secondary structure and recruitment of mRNA to the ribosome; Parkinson disease associated genes (1606 aa)
     
0.994
EIF4G2
Eukaryotic translation initiation factor 4 gamma 2; Appears to play a role in the switch from cap-dependent to IRES-mediated translation during mitosis, apoptosis and viral infection. Cleaved by some caspases and viral proteases (907 aa)
     
0.990
PABPC1
Polyadenylate-binding protein 1; Binds the poly(A) tail of mRNA, including that of its own transcript. May be involved in cytoplasmic regulatory processes of mRNA metabolism such as pre-mRNA splicing. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA- binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding- r [...] (636 aa)
     
 
  0.984
EIF4E2
Eukaryotic translation initiation factor 4E type 2; Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation. Acts as a repressor of translation initiation. In contrast to EIF4E, it is unable to bind eIF4G (EIF4G1, EIF4G2 or EIF4G3), suggesting that it acts by competing with EIF4E and block assembly of eIF4F at the cap (By similarity) (245 aa)
     
  0.977
EIF4E3
Eukaryotic translation initiation factor 4E type 3; Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis. May act as an inhibitor of EIF4E1 activity (By similarity) (224 aa)
     
  0.973
EIF1
Eukaryotic translation initiation factor 1; Necessary for scanning and involved in initiation site selection. Promotes the assembly of 48S ribosomal complexes at the authentic initiation codon of a conventional capped mRNA (113 aa)
     
  0.972
EIF3A
Eukaryotic translation initiation factor 3 subunit A; RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF- 2-GTP-methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termi [...] (1382 aa)
     
  0.972
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]