• Version:
  • 11.0 [archived version]
STRINGSTRING
ENSG00000258150 ENSG00000258150 CCDC101 CCDC101 ENSG00000258130 ENSG00000258130 MOCS2 MOCS2 PEX19 PEX19 MOCS1 MOCS1 MARC2 MARC2 MOCS3 MOCS3 GPHN GPHN AOX1 AOX1 SUOX SUOX
"MOCS2" - Molybdopterin synthase catalytic subunit in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MOCS2Molybdopterin synthase catalytic subunit; Catalytic subunit of the molybdopterin synthase complex, a complex that catalyzes the conversion of precursor Z into molybdopterin. Acts by mediating the incorporation of 2 sulfur atoms from thiocarboxylated MOCS2A into precursor Z to generate a dithiolene group; Belongs to the MoaE family. MOCS2B subfamily (188 aa)    
Predicted Functional Partners:
MOCS1
Molybdenum cofactor biosynthesis protein 1; Isoform MOCS1A and isoform MOCS1B probably form a complex that catalyzes the conversion of 5’-GTP to cyclic pyranopterin monophosphate (cPMP). MOCS1A catalyzes the cyclization of GTP to (8S)-3’,8-cyclo-7,8-dihydroguanosine 5’- triphosphate and MOCS1B catalyzes the subsequent conversion of (8S)-3’,8-cyclo-7,8-dihydroguanosine 5’-triphosphate to cPMP; In the N-terminal section; belongs to the radical SAM superfamily. MoaA family (385 aa)
 
  0.997
GPHN
Gephyrin; Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to anchor the inhibitory glycine receptor (GLYR) to subsynaptic microtubules. Catalyzes two steps in the biosynthesis of the molybdenum cofactor. In the first step, molybdopterin is adenylated. Subsequently, molybdate is inserted into adenylated molybdopterin and AMP is released; In the C-terminal section; belongs to the MoeA family (769 aa)
 
 
  0.993
MOCS3
Adenylyltransferase and sulfurtransferase MOCS3; Plays a central role in 2-thiolation of mcm(5)S(2)U at tRNA wobble positions of cytosolic tRNA(Lys), tRNA(Glu) and tRNA(Gln). Also essential during biosynthesis of the molybdenum cofactor. Acts by mediating the C-terminal thiocarboxylation of sulfur carriers URM1 and MOCS2A. Its N-terminus first activates URM1 and MOCS2A as acyl-adenylates (-COAMP), then the persulfide sulfur on the catalytic cysteine is transferred to URM1 and MOCS2A to form thiocarboxylation (-COSH) of their C-terminus. The reaction probably involves hydrogen sulfide t [...] (460 aa)
   
  0.992
SUOX
Sulfite oxidase, mitochondrial; Sulfite oxidase (545 aa)
   
   
  0.921
MARC2
Mitochondrial amidoxime reducing component 2; As a component of the benzamidoxime prodrug-converting complex required to reduce N-hydroxylated prodrugs, such as benzamidoxime. Also able to reduce N(omega)-hydroxy-L-arginine (NOHA) and N(omega)-hydroxy-N(delta)-methyl-L-arginine (NHAM) into L-arginine and N(delta)-methyl-L-arginine, respectively (335 aa)
   
   
  0.848
AOX1
Aldehyde oxidase; Oxidase with broad substrate specificity, oxidizing aromatic azaheterocycles, such as N1-methylnicotinamide, N- methylphthalazinium and phthalazine, as well as aldehydes, such as benzaldehyde, retinal, pyridoxal, and vanillin. Plays a key role in the metabolism of xenobiotics and drugs containing aromatic azaheterocyclic substituents. Participates in the bioactivation of prodrugs such as famciclovir, catalyzing the oxidation step from 6-deoxypenciclovir to penciclovir, which is a potent antiviral agent. Is probably involved in the regulation of reactive oxygen species [...] (1338 aa)
     
   
  0.827
PEX19
Peroxisomal biogenesis factor 19; Necessary for early peroxisomal biogenesis. Acts both as a cytosolic chaperone and as an import receptor for peroxisomal membrane proteins (PMPs). Binds and stabilizes newly synthesized PMPs in the cytoplasm by interacting with their hydrophobic membrane-spanning domains, and targets them to the peroxisome membrane by binding to the integral membrane protein PEX3. Excludes CDKN2A from the nucleus and prevents its interaction with MDM2, which results in active degradation of TP53; Belongs to the peroxin-19 family (299 aa)
           
  0.793
CCDC101
SAGA-associated factor 29; Chromatin reader component of some histone acetyltransferase (HAT) SAGA-type complexes like the TFTC-HAT, ATAC or STAGA complexes. SGF29 specifically recognizes and binds methylated ’Lys-4’ of histone H3 (H3K4me), with a preference for trimethylated form (H3K4me3). In the SAGA-type complexes, SGF29 is required to recruit complexes to H3K4me. Involved in the response to endoplasmic reticulum (ER) stress by recruiting the SAGA complex to H3K4me, thereby promoting histone H3 acetylation and cell survival (293 aa)
     
 
  0.774
ENSG00000258150
Uncharacterized protein (439 aa)
     
 
  0.757
ENSG00000258130
Protein LOC101929849 (439 aa)
     
 
  0.757
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]