• Version:
  • 11.0 [archived version]
STRINGSTRING
SCN5A SCN5A SCN1A SCN1A SCN10A SCN10A SCN3B SCN3B SCN4A SCN4A SCN2A SCN2A SCN4B SCN4B SCN2B SCN2B NFASC NFASC SCN3A SCN3A SCN8A SCN8A
"SCN3B" - Sodium channel subunit beta-3 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SCN3BSodium channel subunit beta-3; Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with NFASC may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (By similarity); Belongs to the sodium channel auxiliary subunit SCN3B (TC 8.A.17) family (215 aa)    
Predicted Functional Partners:
SCN2B
Sodium channel subunit beta-2; Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity); Belongs to the sodium channel auxiliary subunit SCN2B (TC 8.A.17) family (215 aa)
     
 
  0.984
SCN5A
Sodium channel protein type 5 subunit alpha; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels; Sodium voltage-gated channe [...] (2016 aa)
         
  0.982
SCN4B
Sodium channel subunit beta-4; Modulates channel gating kinetics. Causes negative shifts in the voltage dependence of activation of certain alpha sodium channels, but does not affect the voltage dependence of inactivation. Modulates the suceptibility of the sodium channel to inhibition by toxic peptides from spider, scorpion, wasp and sea anemone venom; Sodium voltage-gated channel beta subunits (228 aa)
     
 
  0.966
SCN2A
Sodium channel protein type 2 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient; Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.2/SCN2A subfamily (2005 aa)
     
 
  0.965
SCN3A
Sodium channel protein type 3 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient; Sodium voltage-gated channel alpha subunits (2000 aa)
     
 
  0.963
NFASC
Neurofascin; Cell adhesion, ankyrin-binding protein which may be involved in neurite extension, axonal guidance, synaptogenesis, myelination and neuron-glial cell interactions; Fibronectin type III domain containing (1240 aa)
     
  0.963
SCN1A
Sodium channel protein type 1 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. Plays a key role in brain, probably by regulating the moment when neurotransmitters are released in neurons. Involved in sensory perception of mechanical pain- activation in somatosensory neurons induces pain without neurogenic inflammatio [...] (2009 aa)
     
 
  0.960
SCN8A
Sodium channel protein type 8 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. In macrophages and melanoma cells, isoform 5 may participate in the control of podosome and invadopodia formation; Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.6/SCN8A subfamily (1980 aa)
     
 
  0.960
SCN10A
Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium- selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms; Sodium voltage-gated channel alpha subunits (1956 aa)
         
  0.956
SCN4A
Sodium channel protein type 4 subunit alpha; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. This sodium channel may be present in both denervated and innervated skeletal muscle; Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.4/SCN4A subfamily (1836 aa)
         
  0.954
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]