• Version:
  • 11.0 [archived version]
STRINGSTRING
CACNB1 CACNB1 CACNG6 CACNG6 CACNA2D1 CACNA2D1 CACNA2D4 CACNA2D4 CACNG7 CACNG7 CACNG1 CACNG1 CACNG3 CACNG3 CACNA2D2 CACNA2D2 CACNB3 CACNB3 CACNA1D CACNA1D CACNG8 CACNG8
"CACNG7" - Voltage-dependent calcium channel gamma-7 subunit in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CACNG7Voltage-dependent calcium channel gamma-7 subunit; Regulates the trafficking and gating properties of AMPA- selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity only for GRIA1 and GRIA2. Thought to stabilize the calcium channel in an inactivated (closed) state; Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily (275 aa)    
Predicted Functional Partners:
CACNB1
Voltage-dependent L-type calcium channel subunit beta-1; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting (598 aa)
     
 
  0.964
CACNA1D
Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the ’high-voltage activated’ (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by o [...] (2181 aa)
     
 
  0.961
CACNA2D1
Voltage-dependent calcium channel subunit alpha-2/delta-1; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation-contraction coupling (By similarity) (1091 aa)
     
 
  0.958
CACNG6
Voltage-dependent calcium channel gamma-6 subunit; Thought to stabilize the calcium channel in an inactivated (closed) state; Calcium channel auxiliary gamma subunits (260 aa)
     
 
  0.949
CACNB3
Voltage-dependent L-type calcium channel subunit beta-3; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting (484 aa)
     
 
  0.945
CACNA2D2
Voltage-dependent calcium channel subunit alpha-2/delta-2; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Acts as a regulatory subunit for P/Q-type calcium channel (CACNA1A), N-type (CACNA1B), L-type (CACNA1C OR CACNA1D) and possibly T-type (CACNA1G). Overexpression induces apoptosis (1150 aa)
     
 
  0.944
CACNG3
Voltage-dependent calcium channel gamma-3 subunit; Regulates the trafficking to the somatodendritic compartment and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state (315 aa)
     
 
0.936
CACNG8
Voltage-dependent calcium channel gamma-8 subunit; Regulates the trafficking and gating properties of AMPA- selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state (425 aa)
     
 
0.932
CACNA2D4
Voltage-dependent calcium channel subunit alpha-2/delta-4; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel; Calcium voltage-gated channel auxiliary alpha2delta subunits (1137 aa)
         
  0.932
CACNG1
Voltage-dependent calcium channel gamma-1 subunit; This protein is a subunit of the dihydropyridine (DHP) sensitive calcium channel. Plays a role in excitation-contraction coupling. The skeletal muscle DHP-sensitive Ca(2+) channel may function only as a multiple subunit complex; Calcium channel auxiliary gamma subunits (222 aa)
         
  0.930
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]