• Version:
  • 11.0 [archived version]
STRINGSTRING
TPMT TPMT GMPS GMPS ITPA ITPA IMPDH2 IMPDH2 ENTPD6 ENTPD6 IMPDH1 IMPDH1 ATIC ATIC AMPD1 AMPD1 ADSS ADSS ENTPD5 ENTPD5 ADSSL1 ADSSL1
"ITPA" - Inosine triphosphate pyrophosphatase in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ITPAInosine triphosphate pyrophosphatase; Pyrophosphatase that hydrolyzes the non-canonical purine nucleotides inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) as well as 2’-deoxy-N-6-hydroxylaminopurine triposphate (dHAPTP) and xanthosine 5’-triphosphate (XTP) to their respective monophosphate derivatives. The enzyme does not distinguish between the deoxy- and ribose forms. Probably excludes non-canonical purines from RNA and DNA precursor pools, thus preventing their incorporation into RNA and DNA and avoiding chromosomal lesions (194 aa)    
Predicted Functional Partners:
ADSS
Adenylosuccinate synthetase isozyme 2; Plays an important role in the de novo pathway and in the salvage pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP (456 aa)
   
  0.985
ADSSL1
Adenylosuccinate synthetase isozyme 1; Component of the purine nucleotide cycle (PNC), which interconverts IMP and AMP to regulate the nucleotide levels in various tissues, and which contributes to glycolysis and ammoniagenesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP (500 aa)
   
  0.980
TPMT
Thiopurine S-methyltransferase; Catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine; Belongs to the class I-like SAM-binding methyltransferase superfamily. TPMT family (245 aa)
         
  0.977
ENTPD6
Ectonucleoside triphosphate diphosphohydrolase 6; Might support glycosylation reactions in the Golgi apparatus and, when released from cells, might catalyze the hydrolysis of extracellular nucleotides. Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent, there is no hydrolysis of nucleoside 5’-monophosphates. The order of activity with different substrates is GDP > IDP >> UDP = CDP >> ADP (By similarity); Belongs to the GDA1/CD39 NTPase family (484 aa)
     
 
  0.974
ENTPD5
Ectonucleoside triphosphate diphosphohydrolase 5; Uridine diphosphatase (UDPase) that promotes protein N- glycosylation and ATP level regulation. UDP hydrolysis promotes protein N-glycosylation and folding in the endoplasmic reticulum, as well as elevated ATP consumption in the cytosol via an ATP hydrolysis cycle. Together with CMPK1 and AK1, constitutes an ATP hydrolysis cycle that converts ATP to AMP and results in a compensatory increase in aerobic glycolysis. The nucleotide hydrolyzing preference is GDP > IDP > UDP, but not any other nucleoside di-, mono- or triphosphates, nor thia [...] (428 aa)
     
 
  0.973
IMPDH2
Inosine-5’-monophosphate dehydrogenase 2; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors (514 aa)
   
  0.966
IMPDH1
Inosine-5’-monophosphate dehydrogenase 1; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors; Belongs to the IMPDH/GMPR family (599 aa)
   
  0.964
GMPS
GMP synthase [glutamine-hydrolyzing]; Involved in the de novo synthesis of guanine nucleotides which are not only essential for DNA and RNA synthesis, but also provide GTP, which is involved in a number of cellular processes important for cell division; Glutamine amidotransferase like class 1 domain containing (693 aa)
   
 
  0.960
ATIC
Bifunctional purine biosynthesis protein PURH; Bifunctional enzyme that catalyzes 2 steps in purine biosynthesis; Belongs to the PurH family (592 aa)
   
 
  0.959
AMPD1
AMP deaminase 1; AMP deaminase plays a critical role in energy metabolism; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deaminases family (780 aa)
   
 
  0.957
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]