• Version:
  • 11.0 [archived version]
STRINGSTRING
AOC1 AOC1 SF3B5 SF3B5 SMS SMS SAT1 SAT1 SNRPA SNRPA AGMAT AGMAT SRM SRM ODC1 ODC1 SAT2 SAT2 AZIN2 AZIN2 OAT OAT
"AGMAT" - Agmatinase, mitochondrial in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AGMATAgmatinase, mitochondrial; Agmatinase (352 aa)    
Predicted Functional Partners:
AZIN2
Antizyme inhibitor 2; Antizyme inhibitor (AZI) protein that positively regulates ornithine decarboxylase (ODC) activity and polyamine uptake. AZI is an enzymatically inactive ODC homolog that counteracts the negative effect of ODC antizymes (AZs) OAZ1, OAZ2 and OAZ3 on ODC activity by competing with ODC for antizyme- binding. Inhibits antizyme-dependent ODC degradation and releases ODC monomers from their inactive complex with antizymes, leading to formation of the catalytically active ODC homodimer and restoring polyamine production. Participates in the morphological integrity of the [...] (460 aa)
   
 
  0.993
ODC1
Ornithine decarboxylase; Catalyzes the first and rate-limiting step of polyamine biosynthesis that converts ornithine into putrescine, which is the precursor for the polyamines, spermidine and spermine. Polyamines are essential for cell proliferation and are implicated in cellular processes, ranging from DNA replication to apoptosis; Belongs to the Orn/Lys/Arg decarboxylase class-II family (461 aa)
   
 
  0.983
SRM
Spermidine synthase; Catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM). Has a strong preference for putrescine as substrate, and has very low activity towards 1,3-diaminopropane. Has extremely low activity towards spermidine (302 aa)
   
 
  0.978
AOC1
Amiloride-sensitive amine oxidase [copper-containing]; Catalyzes the degradation of compounds such as putrescine, histamine, spermine, and spermidine, substances involved in allergic and immune responses, cell proliferation, tissue differentiation, tumor formation, and possibly apoptosis. Placental DAO is thought to play a role in the regulation of the female reproductive function; Belongs to the copper/topaquinone oxidase family (770 aa)
       
  0.953
SAT1
Diamine acetyltransferase 1; Enzyme which catalyzes the acetylation of polyamines. Substrate specificity- norspermidine = spermidine >> spermine > N(1)-acetylspermine > putrescine. This highly regulated enzyme allows a fine attenuation of the intracellular concentration of polyamines. Also involved in the regulation of polyamine transport out of cells. Acts on 1,3-diaminopropane, 1,5-diaminopentane, putrescine, spermidine (forming N(1)- and N(8)-acetylspermidine), spermine, N(1)-acetylspermidine and N(8)-acetylspermidine; Belongs to the acetyltransferase family (171 aa)
     
 
  0.941
SAT2
Diamine acetyltransferase 2; Enzyme which catalyzes the acetylation of polyamines. Substrate specificity- norspermidine > spermidine = spermine >> N(1)acetylspermine = putrescine; GCN5 related N-acetyltransferases (170 aa)
     
 
  0.907
OAT
Ornithine aminotransferase, mitochondrial; Ornithine aminotransferase (439 aa)
   
 
  0.837
SNRPA
U1 small nuclear ribonucleoprotein A; Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5’ splice-site and the subsequent assembly of the spliceosome. U1 snRNP is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP. SNRPA binds stem loop II of U1 snRNA. In a snRNP-free form (SF-A) may be involved in coupled pre-mRNA splicing and polyadenylation process. May bind preferentially to the 5’-UGCAC-3’ motif on RNAs; Belongs to the RRM U1 A/B’’ family (282 aa)
     
      0.821
SF3B5
Splicing factor 3B subunit 5; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (86 aa)
       
      0.820
SMS
Spermine synthase; Catalyzes the production of spermine from spermidine and decarboxylated S-adenosylmethionine (dcSAM) (366 aa)
   
   
  0.756
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (2%) [HD]