• Version:
  • 11.0 [archived version]
STRINGSTRING
RPS6 RPS6 RPTOR RPTOR MAPKAP1 MAPKAP1 EIF4G1 EIF4G1 EIF4EBP2 EIF4EBP2 MTOR MTOR EIF4E EIF4E EIF4E1B EIF4E1B RHEB RHEB EIF4EBP1 EIF4EBP1 EIF4EBP3 EIF4EBP3
"EIF4EBP2" - Eukaryotic translation initiation factor 4E-binding protein 2 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
EIF4EBP2Eukaryotic translation initiation factor 4E-binding protein 2; Repressor of translation initiation involved in synaptic plasticity, learning and memory formation (By similarity). Regulates EIF4E activity by preventing its assembly into the eIF4F complex- hypophosphorylated form of EIF4EBP2 competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repress translation. In contrast, hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation. EIF4EBP2 is enriched in brain and acts as a regulator of s [...] (120 aa)    
Predicted Functional Partners:
EIF4E
Eukaryotic translation initiation factor 4E (248 aa)
       
 
  0.991
RPTOR
Regulatory-associated protein of mTOR; Involved in the control of the mammalian target of rapamycin complex 1 (mTORC1) activity which regulates cell growth and survival, and autophagy in response to nutrient and hormonal signals; functions as a scaffold for recruiting mTORC1 substrates. mTORC1 is activated in response to growth factors or amino acids. Growth factor-stimulated mTORC1 activation involves a AKT1- mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase that potently activates the protein kinase activity of mTORC1. Amino acid-signaling to mTO [...] (1335 aa)
     
  0.985
MTOR
Serine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF [...] (2549 aa)
     
  0.948
EIF4E1B
Eukaryotic translation initiation factor 4E type 1B; Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structure (242 aa)
       
 
  0.857
MAPKAP1
Target of rapamycin complex 2 subunit MAPKAP1; Subunit of mTORC2, which regulates cell growth and survival in response to hormonal signals. mTORC2 is activated by growth factors, but, in contrast to mTORC1, seems to be nutrient- insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 ’Ser-473’ phosphorylation, which may facilitate the phosphorylation of the [...] (522 aa)
       
 
  0.836
EIF4EBP1
Eukaryotic translation initiation factor 4E-binding protein 1; Repressor of translation initiation that regulates EIF4E activity by preventing its assembly into the eIF4F complex- hypophosphorylated form competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repress translation. In contrast, hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation. Mediates the regulation of protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase and mTORC1 pathways (118 aa)
         
0.809
EIF4EBP3
Eukaryotic translation initiation factor 4E-binding protein 3; Repressor of translation initiation that regulates EIF4E activity by preventing its assembly into the eIF4F complex- hypophosphorylated form competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repress translation. In contrast, hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation (100 aa)
         
0.809
RPS6
40S ribosomal protein S6; May play an important role in controlling cell growth and proliferation through the selective translation of particular classes of mRNA; S ribosomal proteins (249 aa)
           
  0.776
EIF4G1
Eukaryotic translation initiation factor 4 gamma 1; Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5’-terminal secondary structure and recruitment of mRNA to the ribosome; Parkinson disease associated genes (1606 aa)
     
   
  0.774
RHEB
GTP-binding protein Rheb; Activates the protein kinase activity of mTORC1, and thereby plays a role in the regulation of apoptosis. Stimulates the phosphorylation of S6K1 and EIF4EBP1 through activation of mTORC1 signaling. Has low intrinsic GTPase activity; RAS type GTPase family (184 aa)
           
  0.772
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]