• Version:
  • 11.0 [archived version]
STRINGSTRING
PCID2 PCID2 MACROD1 MACROD1 TROVE2 TROVE2 OARD1 OARD1 ADPRHL2 ADPRHL2 PARP3 PARP3 PARG PARG PARP2 PARP2 PARP1 PARP1 MACROD2 MACROD2 TNKS TNKS
"ADPRHL2" - Poly(ADP-ribose) glycohydrolase ARH3 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ADPRHL2Poly(ADP-ribose) glycohydrolase ARH3; Poly(ADP-ribose) synthesized after DNA damage is only present transiently and is rapidly degraded by poly(ADP-ribose) glycohydrolase. Poly(ADP-ribose) metabolism may be required for maintenance of the normal function of neuronal cells. Generates ADP-ribose from poly-(ADP-ribose), but does not hydrolyze ADP- ribose-arginine, -cysteine, -diphthamide, or -asparagine bonds. Due to catalytic inactivity of PARG mitochondrial isoforms, ARH3 is the only PAR hydrolyzing enzyme in mitochondria (363 aa)    
Predicted Functional Partners:
PARG
Poly(ADP-ribose) glycohydrolase; Poly(ADP-ribose) synthesized after DNA damage is only present transiently and is rapidly degraded by poly(ADP-ribose) glycohydrolase. PARG acts both as an endo- and exoglycosidase, releasing PAR of different length as well as ADP- ribose monomers. Required for retinoid acid- dependent gene transactivation, probably by dePARsylating histone demethylase KDM4D, allowing chromatin derepression at RAR- dependent gene promoters. Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5. Nuclear ATP generation is required for exten [...] (976 aa)
     
   
  0.901
MACROD2
O-acetyl-ADP-ribose deacetylase MACROD2; Removes ADP-ribose from glutamate residues in proteins bearing a single ADP-ribose moiety. Inactive towards proteins bearing poly-ADP-ribose. Deacetylates O-acetyl-ADP ribose, a signaling molecule generated by the deacetylation of acetylated lysine residues in histones and other proteins (425 aa)
         
  0.892
PCID2
PCI domain containing 2; Transcription and export complex 2 (453 aa)
       
      0.862
MACROD1
O-acetyl-ADP-ribose deacetylase MACROD1; Removes ADP-ribose from glutamate residues in proteins bearing a single ADP-ribose moiety. Inactive towards proteins bearing poly-ADP-ribose. Deacetylates O-acetyl-ADP ribose, a signaling molecule generated by the deacetylation of acetylated lysine residues in histones and other proteins. Plays a role in estrogen signaling. Binds to androgen receptor (AR) and amplifies the transactivation function of AR in response to androgen. May play an important role in carcinogenesis and/or progression of hormone-dependent cancers by feed-forward mechanism [...] (325 aa)
   
   
  0.828
OARD1
O-acetyl-ADP-ribose deacetylase 1; Deacetylates O-acetyl-ADP ribose, a signaling molecule generated by the deacetylation of acetylated lysine residues in histones and other proteins. Catalyzes the deacylation of O- acetyl-ADP-ribose, O-propionyl-ADP-ribose and O-butyryl-ADP- ribose, yielding ADP-ribose plus acetate, propionate and butyrate, respectively (152 aa)
           
  0.769
TNKS
Tankyrase-1; Poly-ADP-ribosyltransferase involved in various processes such as Wnt signaling pathway, telomere length and vesicle trafficking. Acts as an activator of the Wnt signaling pathway by mediating poly-ADP-ribosylation (PARsylation) of AXIN1 and AXIN2, 2 key components of the beta-catenin destruction complex- poly-ADP-ribosylated target proteins are recognized by RNF146, which mediates their ubiquitination and subsequent degradation. Also mediates PARsylation of BLZF1 and CASC3, followed by recruitment of RNF146 and subsequent ubiquitination. Mediates PARsylation of TERF1, the [...] (1327 aa)
   
 
  0.699
TROVE2
60 kDa SS-A/Ro ribonucleoprotein; RNA-binding protein that binds to misfolded non-coding RNAs, pre-5S rRNA, and several small cytoplasmic RNA molecules known as Y RNAs. May stabilize some of these RNAs and protect them from degradation; Belongs to the Ro 60 kDa family (538 aa)
     
   
  0.678
PARP1
Poly [ADP-ribose] polymerase 1; Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. Mediates the poly(ADP-ribosyl)ation of APLF and CHFR. Positively regulates the transcription of MTUS1 and negatively regulates the transcription of MTUS2/TIP150. With EEF1A1 and TXK, forms a complex that acts as a T [...] (1014 aa)
           
  0.658
PARP3
Poly [ADP-ribose] polymerase 3; Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. May link the DNA damage surveillance network to the mitotic fidelity checkpoint. Negatively influences the G1/S cell cycle progression without interfering with centrosome duplication. Binds DNA. May be involved in t [...] (540 aa)
           
  0.655
PARP2
Poly [ADP-ribose] polymerase 2; Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. Mediates serine ADP-ribosylation of target proteins following interaction with HPF1; HPF1 conferring serine specificity; Poly(ADP-ribose) polymerases (583 aa)
     
   
  0.645
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]