• Version:
  • 11.0 [archived version]
STRINGSTRING
DMGDH DMGDH GNMT GNMT GLDC GLDC GATM GATM SARDH SARDH SHMT1 SHMT1 SHMT2 SHMT2 GCAT GCAT DAO DAO AGXT2 AGXT2 AGXT AGXT
"GNMT" - Glycine N-methyltransferase in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GNMTGlycine N-methyltransferase; Catalyzes the methylation of glycine by using S- adenosylmethionine (AdoMet) to form N-methylglycine (sarcosine) with the concomitant production of S-adenosylhomocysteine (AdoHcy). Possible crucial role in the regulation of tissue concentration of AdoMet and of metabolism of methionine; Seven-beta-strand methyltransferase motif containing (295 aa)    
Predicted Functional Partners:
DMGDH
Dimethylglycine dehydrogenase, mitochondrial; Catalyzes the demethylation of N,N-dimethylglycine to sarcosine. Also has activity with sarcosine in vitro (866 aa)
     
 
  0.981
SHMT2
Serine hydroxymethyltransferase, mitochondrial; Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism. Thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA. Interconversion of serine and glycine. Associates with mitochondrial DNA. Plays a role in the deubiquitination of target proteins as component of the BRISC complex. Required for IFNAR1 deubiquitination by the BRISC complex; Belongs to the SHMT family (504 aa)
     
 
  0.966
SHMT1
Serine hydroxymethyltransferase, cytosolic; Interconversion of serine and glycine (483 aa)
     
 
  0.959
GLDC
Glycine dehydrogenase (decarboxylating), mitochondrial; The glycine cleavage system catalyzes the degradation of glycine. The P protein (GLDC) binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (GCSH) (1020 aa)
     
 
  0.934
AGXT
Alanine-glyoxylate aminotransferase (392 aa)
     
 
  0.932
GATM
Glycine amidinotransferase, mitochondrial; Catalyzes the biosynthesis of guanidinoacetate, the immediate precursor of creatine. Creatine plays a vital role in energy metabolism in muscle tissues. May play a role in embryonic and central nervous system development. May be involved in the response to heart failure by elevating local creatine synthesis; Belongs to the amidinotransferase family (423 aa)
         
  0.926
GCAT
2-amino-3-ketobutyrate coenzyme A ligase, mitochondrial; Glycine C-acetyltransferase; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family (445 aa)
     
 
  0.913
AGXT2
Alanine--glyoxylate aminotransferase 2, mitochondrial; Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family (514 aa)
     
 
  0.911
DAO
D-amino-acid oxidase; Regulates the level of the neuromodulator D-serine in the brain. Has high activity towards D-DOPA and contributes to dopamine synthesis. Could act as a detoxifying agent which removes D-amino acids accumulated during aging. Acts on a variety of D- amino acids with a preference for those having small hydrophobic side chains followed by those bearing polar, aromatic, and basic groups. Does not act on acidic amino acids; Belongs to the DAMOX/DASOX family (347 aa)
     
 
  0.907
SARDH
Sarcosine dehydrogenase, mitochondrial; Sarcosine dehydrogenase; Belongs to the GcvT family (918 aa)
     
   
  0.902
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]