• Version:
  • 11.0 [archived version]
STRINGSTRING
DIABLO DIABLO CYCS CYCS HTRA2 HTRA2 AIFM1 AIFM1 TBC1D13 TBC1D13 C9orf114 C9orf114 ENDOG ENDOG CCBL1 CCBL1 FEN1 FEN1 ITLN2 ITLN2 ITLN1 ITLN1
"ENDOG" - Endonuclease G, mitochondrial in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ENDOGEndonuclease G, mitochondrial; Cleaves DNA at double-stranded (DG)n.(DC)n and at single-stranded (DC)n tracts. In addition to deoxyribonuclease activities, also has ribonuclease (RNase) and RNase H activities. Capable of generating the RNA primers required by DNA polymerase gamma to initiate replication of mitochondrial DNA (By similarity); Belongs to the DNA/RNA non-specific endonuclease family (297 aa)    
Predicted Functional Partners:
AIFM1
Apoptosis-inducing factor 1, mitochondrial; Functions both as NADH oxidoreductase and as regulator of apoptosis. In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway. In contrast, functions as an antiapoptotic factor in normal mitochondria via its NADH oxidoreductase activity. The soluble form (AIFsol) found in the nucleus induces ’parthanatos’ i.e. caspase-independent fragmentation of chromosomal DNA. Interacts with EIF3G,and thereby [...] (613 aa)
     
 
  0.965
FEN1
Flap endonuclease 1; Structure-specific nuclease with 5’-flap endonuclease and 5’-3’ exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5’-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5’-end of a downstream Okazaki fragment. It enters the flap from the 5’-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a [...] (380 aa)
     
 
  0.948
CYCS
Cytochrome c; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain (105 aa)
     
   
  0.879
ITLN2
Intelectin-2; May play a role in the defense system against pathogens; Fibrinogen C domain containing (325 aa)
       
      0.874
HTRA2
Serine protease HTRA2, mitochondrial; Serine protease that shows proteolytic activity against a non-specific substrate beta-casein. Promotes or induces cell death either by direct binding to and inhibition of BIRC proteins (also called inhibitor of apoptosis proteins, IAPs), leading to an increase in caspase activity, or by a BIRC inhibition-independent, caspase-independent and serine protease activity-dependent mechanism. Cleaves THAP5 and promotes its degradation during apoptosis. Isoform 2 seems to be proteolytically inactive; Belongs to the peptidase S1C family (458 aa)
     
   
  0.872
DIABLO
Diablo homolog, mitochondrial; Promotes apoptosis by activating caspases in the cytochrome c/Apaf-1/caspase-9 pathway. Acts by opposing the inhibitory activity of inhibitor of apoptosis proteins (IAP). Inhibits the activity of BIRC6/bruce by inhibiting its binding to caspases. Isoform 3 attenuates the stability and apoptosis- inhibiting activity of XIAP/BIRC4 by promoting XIAP/BIRC4 ubiquitination and degradation through the ubiquitin-proteasome pathway. Isoform 3 also disrupts XIAP/BIRC4 interacting with processed caspase-9 and promotes caspase-3 activation. Isoform 1 is defective in [...] (239 aa)
           
  0.825
C9orf114
Putative methyltransferase C9orf114; Required for association of the centrosomes with the poles of the bipolar mitotic spindle during metaphase. Also involved in chromosome alignment. May promote centrosome maturation probably by recruiting A-kinase anchor protein AKAP9 to centrosomes in early mitosis. Binds specifically to miRNA MIR145 hairpin, regulates MIR145 expression at a postranscriptional level (376 aa)
     
   
  0.817
TBC1D13
TBC1 domain family member 13; Acts as a GTPase-activating protein for RAB35. Together with RAB35 may be involved in regulation of insulin-induced glucose transporter SLC2A4/GLUT4 translocation to the plasma membrane in adipocytes (400 aa)
           
  0.800
ITLN1
Intelectin-1; Lectin that specifically recognizes microbial carbohydrate chains in a calcium-dependent manner. Binds to microbial glycans that contain a terminal acyclic 1,2-diol moiety, including beta- linked D-galactofuranose (beta-Galf), D-phosphoglycerol-modified glycans, D-glycero-D-talo-oct-2-ulosonic acid (KO) and 3-deoxy-D- manno-oct-2-ulosonic acid (KDO). Binds to glycans from Gram-positive and Gram-negative bacteria, including K.pneumoniae, S.pneumoniae, Y.pestis, P.mirabilis and P.vulgaris. Does not bind human glycans. Probably plays a role in the defense system against micr [...] (313 aa)
       
      0.798
CCBL1
Kynurenine--oxoglutarate transaminase 1; Catalyzes the irreversible transamination of the L- tryptophan metabolite L-kynurenine to form kynurenic acid (KA). Metabolizes the cysteine conjugates of certain halogenated alkenes and alkanes to form reactive metabolites. Catalyzes the beta- elimination of S-conjugates and Se-conjugates of L- (seleno)cysteine, resulting in the cleavage of the C-S or C-Se bond (516 aa)
     
   
  0.776
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]