• Version:
  • 11.0 [archived version]
STRINGSTRING
ATP5C1 ATP5C1 SLC25A3 SLC25A3 TSPO TSPO SLC25A5 SLC25A5 VDAC2 VDAC2 TOMM20 TOMM20 VDAC1 VDAC1 PPIF PPIF TOMM70A TOMM70A RHOT1 RHOT1 PTRH2 PTRH2
"VDAC2" - Voltage-dependent anion-selective channel protein 2 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
VDAC2Voltage-dependent anion-selective channel protein 2; Forms a channel through the mitochondrial outer membrane that allows diffusion of small hydrophilic molecules. The channel adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV. The open state has a weak anion selectivity whereas the closed state is cation- selective; Belongs to the eukaryotic mitochondrial porin family (309 aa)    
Predicted Functional Partners:
VDAC1
Voltage-dependent anion-selective channel protein 1; Forms a channel through the mitochondrial outer membrane and also the plasma membrane. The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; in the plasma membrane it is involved in cell volume regulation and apoptosis. It adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV. The open state has a weak anion selectivity whereas the closed state is cation-selective. May participate in the formation of the permeability transition p [...] (283 aa)
     
0.991
TOMM20
Mitochondrial import receptor subunit TOM20 homolog; Central component of the receptor complex responsible for the recognition and translocation of cytosolically synthesized mitochondrial preproteins. Together with TOM22 functions as the transit peptide receptor at the surface of the mitochondrion outer membrane and facilitates the movement of preproteins into the TOM40 translocation pore (By similarity); Belongs to the Tom20 family (145 aa)
     
  0.973
TOMM70A
Mitochondrial import receptor subunit TOM70; Receptor that accelerates the import of all mitochondrial precursor proteins (608 aa)
     
  0.965
SLC25A5
ADP/ATP translocase 2; Catalyzes the exchange of cytoplasmic ADP with mitochondrial ATP across the mitochondrial inner membrane. As part of the mitotic spindle-associated MMXD complex it may play a role in chromosome segregation; Solute carriers (298 aa)
     
  0.954
RHOT1
Mitochondrial Rho GTPase 1; Mitochondrial GTPase involved in mitochondrial trafficking. Probably involved in control of anterograde transport of mitochondria and their subcellular distribution; EF-hand domain containing (691 aa)
     
  0.946
ATP5C1
ATP synthase subunit gamma, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (298 aa)
     
 
  0.945
TSPO
Translocator protein; Can bind protoporphyrin IX and may play a role in the transport of porphyrins and heme (By similarity). Promotes the transport of cholesterol across mitochondrial membranes and may play a role in lipid metabolism, but its precise physiological role is controversial. It is apparently not required for steroid hormone biosynthesis. Was initially identified as peripheral-type benzodiazepine receptor; can also bind isoquinoline carboxamides; Belongs to the TspO/BZRP family (169 aa)
       
  0.944
PPIF
Peptidyl-prolyl cis-trans isomerase F, mitochondrial; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Involved in regulation of the mitochondrial permeability transition pore (mPTP). It is proposed that its association with the mPTP is masking a binding site for inhibiting inorganic phosphate (Pi) and promotes the open probability of the mPTP leading to apoptosis or necrosis; the requirement of the PPIase activity for this function is debated. In cooperation with mitochondrial TP53 is involved in act [...] (207 aa)
     
  0.935
SLC25A3
Phosphate carrier protein, mitochondrial; Transport of phosphate groups from the cytosol to the mitochondrial matrix. Phosphate is cotransported with H(+). May play a role regulation of the mitochondrial permeability transition pore (mPTP); Solute carriers (362 aa)
     
 
  0.934
PTRH2
Peptidyl-tRNA hydrolase 2, mitochondrial; The natural substrate for this enzyme may be peptidyl- tRNAs which drop off the ribosome during protein synthesis; Belongs to the PTH2 family (179 aa)
     
 
  0.928
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]