• Version:
  • 11.0 [archived version]
STRINGSTRING
KCNAB1 KCNAB1 PRKAR1A PRKAR1A PRKAR1B PRKAR1B AKAP5 AKAP5 KCNAB2 KCNAB2 PRKACB PRKACB KCNB1 KCNB1 PRKAR2B PRKAR2B PRKACG PRKACG PRKAR2A PRKAR2A KCNAB3 KCNAB3
"KCNB1" - Potassium voltage-gated channel subfamily B member 1 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KCNB1Potassium voltage-gated channel subfamily B member 1; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain, but also in the pancreas and cardiovascular system. Contributes to the regulation of the action potential (AP) repolarization, duration and frequency of repetitive AP firing in neurons, muscle cells and endocrine cells and plays a role in homeostatic attenuation of electrical excitability throughout the brain. Plays also a role in the regulation of exocytosis independently of its electrical function (By sim [...] (858 aa)    
Predicted Functional Partners:
KCNAB1
Voltage-gated potassium channel subunit beta-1; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Modulates action potentials via its effect on the pore-forming alpha subunits (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Mediates closure of delayed rectifier potassium channels by physically obstructing the pore via its N-terminal domain and increases the speed of channel closure for other family members. Promotes the clos [...] (419 aa)
     
  0.972
KCNAB2
Voltage-gated potassium channel subunit beta-2; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Contributes to the regulation of nerve signaling, and prevents neuronal hyperexcitability (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Promotes potassium channel closure via a mechanism that does not involve physical obstruction of the channel pore. Promotes KCNA4 channel closure. Modulates the functional properties of KCNA5 [...] (415 aa)
     
  0.964
KCNAB3
Voltage-gated potassium channel subunit beta-3; Accessory potassium channel protein which modulates the activity of the pore-forming alpha subunit. Alters the functional properties of Kv1.5; Aldo-keto reductases (404 aa)
     
  0.947
AKAP5
A-kinase anchor protein 5; May anchor the PKA protein to cytoskeletal and/or organelle-associated proteins, targeting the signal carried by cAMP to specific intracellular effectors. Association with to the beta2-adrenergic receptor (beta2-AR) not only regulates beta2-AR signaling pathway, but also the activation by PKA by switching off the beta2-AR signaling cascade; A-kinase anchoring proteins (427 aa)
     
 
  0.932
PRKAR1B
cAMP-dependent protein kinase type I-beta regulatory subunit; Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells (381 aa)
     
 
    0.902
PRKAR2B
cAMP-dependent protein kinase type II-beta regulatory subunit; Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase (418 aa)
     
 
    0.902
PRKAR2A
cAMP-dependent protein kinase type II-alpha regulatory subunit; Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase (404 aa)
     
 
    0.902
PRKAR1A
cAMP-dependent protein kinase type I-alpha regulatory subunit; Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells (381 aa)
     
 
    0.902
PRKACG
cAMP-dependent protein kinase catalytic subunit gamma; Phosphorylates a large number of substrates in the cytoplasm and the nucleus; Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. cAMP subfamily (351 aa)
     
 
    0.902
PRKACB
cAMP-dependent protein kinase catalytic subunit beta; Mediates cAMP-dependent signaling triggered by receptor binding to GPCRs. PKA activation regulates diverse cellular processes such as cell proliferation, the cell cycle, differentiation and regulation of microtubule dynamics, chromatin condensation and decondensation, nuclear envelope disassembly and reassembly, as well as regulation of intracellular transport mechanisms and ion flux. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subu [...] (398 aa)
     
 
    0.902
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]