• Version:
  • 11.0 [archived version]
STRINGSTRING
METTL3 METTL3 METTL14 METTL14 CBLL1 CBLL1 KIAA1429 KIAA1429 WTAP WTAP ZC3H13 ZC3H13 RBM15B RBM15B RBM15 RBM15 ALYREF ALYREF MKL1 MKL1 KHDRBS1 KHDRBS1
"RBM15" - Putative RNA-binding protein 15 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RBM15Putative RNA-binding protein 15; May function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing. High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing. May be implicated in HOX gene regulation; Belongs to the RRM Spen family (977 aa)    
Predicted Functional Partners:
RBM15B
Putative RNA-binding protein 15B; May function in the regulation of alternative or illicit splicing; Belongs to the RRM Spen family (890 aa)
       
0.983
WTAP
Pre-mRNA-splicing regulator WTAP; Regulatory subunit of the WMM N6-methyltransferase complex, a multiprotein complex that mediates N6-methyladenosine (m6A) methylation of some adenosine residues of some mRNAs and plays a role in the efficiency of mRNA splicing, processing and mRNA stability. Required for accumulation of METTL3 and METTL14 to nuclear speckle. Acts as a mRNA splicing regulator. Regulates G2/M cell-cycle transition by binding to the 3’ UTR of CCNA2, which enhances its stability. Impairs WT1 DNA-binding ability and inhibits expression of WT1 target genes (396 aa)
     
  0.981
KIAA1429
Protein virilizer homolog; Required for N6-methyladenosine (m6A) methylation of mRNAs, a modification that plays a role in the efficiency of mRNA splicing and processing. Involved in mRNA splicing regulation, probably via its function in m6A methylation (Probable); Belongs to the vir family (1812 aa)
     
 
  0.977
METTL14
N6-adenosine-methyltransferase non-catalytic subunit; The METTL3-METTL14 heterodimer forms a N6- methyltransferase complex that methylates adenosine residues at the N(6) position of some mRNAs and regulates the circadian clock, differentiation of embryonic stem cells and cortical neurogenesis. In the heterodimer formed with METTL3, METTL14 constitutes the RNA-binding scaffold that recognizes the substrate rather than the catalytic core. N6- methyladenosine (m6A), which takes place at the 5’-[AG]GAC-3’ consensus sites of some mRNAs, plays a role in mRNA stability and processing. M6A act [...] (456 aa)
     
 
  0.976
METTL3
N6-adenosine-methyltransferase catalytic subunit; The METTL3-METTL14 heterodimer forms a N6- methyltransferase complex that methylates adenosine residues at the N(6) position of some RNAs and regulates various processes such as the circadian clock, differentiation of embryonic and haematopoietic stem cells, cortical neurogenesis, response to DNA damage, differentiation of T-cells and primary miRNA processing. In the heterodimer formed with METTL14, METTL3 constitutes the catalytic core. N6-methyladenosine (m6A), which takes place at the 5’-[AG]GAC-3’ consensus sites of some mRNAs, play [...] (580 aa)
     
 
  0.962
ZC3H13
Zinc finger CCCH domain-containing protein 13; Acts as component of the WTAP complex that is involved in RNA processing and cell cycle (1564 aa)
     
  0.959
ALYREF
THO complex subunit 4; Export adapter involved in nuclear export of spliced and unspliced mRNA. Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NFX1 pathway). Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region [...] (264 aa)
     
 
  0.946
CBLL1
E3 ubiquitin-protein ligase Hakai; Promotes ubiquitination of several tyrosine- phosphorylated Src substrates, including CDH1, CTTN and DOK1. Targets CDH1 for endocytosis and degradation; Ring finger proteins (491 aa)
     
 
  0.921
KHDRBS1
KH domain-containing, RNA-binding, signal transduction-associated protein 1; Recruited and tyrosine phosphorylated by several receptor systems, for example the T-cell, leptin and insulin receptors. Once phosphorylated, functions as an adapter protein in signal transduction cascades by binding to SH2 and SH3 domain- containing proteins. Role in G2-M progression in the cell cycle. Represses CBP-dependent transcriptional activation apparently by competing with other nuclear factors for binding to CBP. Also acts as a putative regulator of mRNA stability and/or translation rates and mediate [...] (443 aa)
     
 
  0.902
MKL1
MKL/myocardin-like protein 1; Transcriptional coactivator of serum response factor (SRF) with the potential to modulate SRF target genes. Suppresses TNF-induced cell death by inhibiting activation of caspases; its transcriptional activity is indispensable for the antiapoptotic function. It may up-regulate antiapoptotic molecules, which in turn inhibit caspase activation (By similarity); Myocardin family (931 aa)
     
   
  0.807
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]