• Version:
  • 11.0 [archived version]
STRINGSTRING
ATP5J2 ATP5J2 ATP5J ATP5J ATP5G3 ATP5G3 ATP5F1 ATP5F1 LHPP LHPP PPA2 PPA2 PPA1 PPA1 ATP6V0A4 ATP6V0A4 ATP12A ATP12A ATP4A ATP4A ATP4B ATP4B
"LHPP" - Phospholysine phosphohistidine inorganic pyrophosphate phosphatase in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
LHPPPhospholysine phosphohistidine inorganic pyrophosphate phosphatase; Phosphatase that hydrolyzes imidodiphosphate, 3- phosphohistidine and 6-phospholysine. Has broad substrate specificity and can also hydrolyze inorganic diphosphate, but with lower efficiency (By similarity); Belongs to the HAD-like hydrolase superfamily (270 aa)    
Predicted Functional Partners:
ATP4B
Potassium-transporting ATPase subunit beta; Required for stabilization and maturation of the catalytic proton pump alpha subunit and may also involved in cell adhesion and establishing epithelial cell polarity; ATPase H+/K+ transporting (291 aa)
         
  0.928
ATP12A
Potassium-transporting ATPase alpha chain 2; Catalyzes the hydrolysis of ATP coupled with the exchange of H(+) and K(+) ions across the plasma membrane. Responsible for potassium absorption in various tissues; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily (1045 aa)
     
 
  0.922
ATP4A
Potassium-transporting ATPase alpha chain 1; Catalyzes the hydrolysis of ATP coupled with the exchange of H(+) and K(+) ions across the plasma membrane. Responsible for acid production in the stomach; ATPase H+/K+ transporting (1035 aa)
     
 
  0.922
PPA1
Pyrophosphatase 1 (289 aa)
     
 
  0.903
ATP6V0A4
V-type proton ATPase 116 kDa subunit a isoform 4; Part of the proton channel of the V-ATPase that is involved in normal vectorial acid transport into the urine by the kidney; V-type ATPases (840 aa)
     
 
  0.857
PPA2
Inorganic pyrophosphatase 2, mitochondrial; Hydrolyzes inorganic pyrophosphate. This activity is essential for correct regulation of mitochondrial membrane potential, and mitochondrial organization and function (334 aa)
     
 
  0.856
ATP5G3
ATP synthase F(0) complex subunit C3, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanis [...] (142 aa)
         
  0.801
ATP5F1
ATP synthase F(0) complex subunit B1, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechani [...] (256 aa)
     
 
  0.800
ATP5J
ATP synthase-coupling factor 6, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of t [...] (116 aa)
     
 
  0.793
ATP5J2
ATP synthase subunit f, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the centr [...] (94 aa)
         
  0.774
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]