• Version:
  • 11.0 [archived version]
STRINGSTRING
CACNA1C CACNA1C CACNB1 CACNB1 CACNA2D1 CACNA2D1 CACNA1S CACNA1S CACNA1F CACNA1F CACNB4 CACNB4 CACNG1 CACNG1 CACNG3 CACNG3 CACNB2 CACNB2 CACNB3 CACNB3 CACNA1D CACNA1D
"CACNA2D1" - Voltage-dependent calcium channel subunit alpha-2/delta-1 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CACNA2D1Voltage-dependent calcium channel subunit alpha-2/delta-1; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation-contraction coupling (By similarity) (1091 aa)    
Predicted Functional Partners:
CACNB1
Voltage-dependent L-type calcium channel subunit beta-1; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting (598 aa)
     
  0.998
CACNG1
Voltage-dependent calcium channel gamma-1 subunit; This protein is a subunit of the dihydropyridine (DHP) sensitive calcium channel. Plays a role in excitation-contraction coupling. The skeletal muscle DHP-sensitive Ca(2+) channel may function only as a multiple subunit complex; Calcium channel auxiliary gamma subunits (222 aa)
     
  0.996
CACNB2
Voltage-dependent L-type calcium channel subunit beta-2; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting (660 aa)
     
  0.995
CACNA1D
Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the ’high-voltage activated’ (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by o [...] (2181 aa)
     
  0.987
CACNA1C
Voltage-dependent L-type calcium channel subunit alpha-1C; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1C gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the ’high-voltage activated’ (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by o [...] (2186 aa)
     
  0.983
CACNB3
Voltage-dependent L-type calcium channel subunit beta-3; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting (484 aa)
     
  0.981
CACNB4
Voltage-dependent L-type calcium channel subunit beta-4; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting (520 aa)
     
  0.981
CACNA1F
Voltage-dependent L-type calcium channel subunit alpha-1F; Isoform 1- Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1F gives rise to L-type calcium currents. Long- lasting (L-type) calcium channels belong to the ’high-voltage activated’ (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepin [...] (1977 aa)
     
  0.974
CACNA1S
Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the ’high-voltage activated’ (HVA) group (1873 aa)
     
  0.974
CACNG3
Voltage-dependent calcium channel gamma-3 subunit; Regulates the trafficking to the somatodendritic compartment and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state (315 aa)
     
 
  0.964
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]