• Version:
  • 11.0 [archived version]
STRINGSTRING
ATP1B2 ATP1B2 ST3GAL4 ST3GAL4 ST3GAL1 ST3GAL1 VWF VWF TG TG ASGR1 ASGR1 ASGR2 ASGR2 APOA2 APOA2 CERS2 CERS2 SLC22A1 SLC22A1 ATP6V0C ATP6V0C
"ASGR2" - Asialoglycoprotein receptor 2 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ASGR2Asialoglycoprotein receptor 2; Mediates the endocytosis of plasma glycoproteins to which the terminal sialic acid residue on their complex carbohydrate moieties has been removed. The receptor recognizes terminal galactose and N-acetylgalactosamine units. After ligand binding to the receptor, the resulting complex is internalized and transported to a sorting organelle, where receptor and ligand are disassociated. The receptor then returns to the cell membrane surface; C-type lectin domain containing (311 aa)    
Predicted Functional Partners:
ASGR1
Asialoglycoprotein receptor 1; Mediates the endocytosis of plasma glycoproteins to which the terminal sialic acid residue on their complex carbohydrate moieties has been removed. The receptor recognizes terminal galactose and N-acetylgalactosamine units. After ligand binding to the receptor, the resulting complex is internalized and transported to a sorting organelle, where receptor and ligand are disassociated. The receptor then returns to the cell membrane surface; C-type lectin domain containing (291 aa)
     
0.971
ST3GAL4
CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 4; Catalyzes the formation of the NeuAc-alpha-2,3-Gal-beta- 1,4-GlcNAc-, and NeuAc-alpha-2,3-Gal-beta-1,3-GlcNAc- sequences found in terminal carbohydrate groups of glycoproteins and glycolipids. It may be involved in the biosynthesis of the sialyl Lewis X determinant; Belongs to the glycosyltransferase 29 family (333 aa)
     
   
  0.903
CERS2
Ceramide synthase 2; Suppresses the growth of cancer cells. May be involved in sphingolipid synthesis; CERS class homeoboxes (380 aa)
       
 
  0.829
TG
Thyroglobulin; Precursor of the iodinated thyroid hormones thyroxine (T4) and triiodothyronine (T3); Belongs to the type-B carboxylesterase/lipase family (2768 aa)
         
    0.800
ATP1B2
Sodium/potassium-transporting ATPase subunit beta-2; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-2 subunit is not known; ATPase Na+/K+ transporting subunits (290 aa)
           
  0.751
ATP6V0C
V-type proton ATPase 16 kDa proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; V-type ATPases (155 aa)
       
 
  0.735
ST3GAL1
CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1; Responsible for the synthesis of the sequence NeuAc- alpha-2,3-Gal-beta-1,3-GalNAc- found on sugar chains O-linked to Thr or Ser and also as a terminal sequence on certain gangliosides. SIAT4A and SIAT4B sialylate the same acceptor substrates but exhibit different Km values; Belongs to the glycosyltransferase 29 family (340 aa)
           
  0.719
SLC22A1
Solute carrier family 22 member 1; Translocates a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN), 4-(4-(dimethylamino)styryl)- N-methylpyridinium (ASP), the endogenous compounds choline, guanidine, histamine, epinephrine, adrenaline, noradrenaline and dopamine, and the drugs quinine, and metformin. The transport of organic cations is inhibited by a broad array of compounds like tetramethylammonium (TMA), cocaine, lidocaine, NMDA receptor [...] (554 aa)
     
   
  0.718
VWF
Von Willebrand factor; Important in the maintenance of hemostasis, it promotes adhesion of platelets to the sites of vascular injury by forming a molecular bridge between sub-endothelial collagen matrix and platelet-surface receptor complex GPIb-IX-V. Also acts as a chaperone for coagulation factor VIII, delivering it to the site of injury, stabilizing its heterodimeric structure and protecting it from premature clearance from plasma; Endogenous ligands (2813 aa)
           
  0.646
APOA2
Apolipoprotein A-II; May stabilize HDL (high density lipoprotein) structure by its association with lipids, and affect the HDL metabolism; Apolipoproteins (100 aa)
     
        0.560
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]