• Version:
  • 11.0 [archived version]
STRINGSTRING
CLTC CLTC AP1G2 AP1G2 AP2A1 AP2A1 CLTA CLTA NCALD NCALD KCNAB1 KCNAB1 AP2S1 AP2S1 KCNQ5 KCNQ5 AP1S1 AP1S1 KCNAB2 KCNAB2 KCNAB3 KCNAB3
"KCNQ5" - Potassium voltage-gated channel subfamily KQT member 5 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KCNQ5Potassium voltage-gated channel subfamily KQT member 5; Associates with KCNQ3 to form a potassium channel which contributes to M-type current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons. Therefore, it is important in the regulation of neuronal excitability. May contribute, with other potassium channels, to the molecular diversity of a heterogeneous population of M- channels, varying in kinetic and pharmacological properties, which underlie this physiologically important curren [...] (951 aa)    
Predicted Functional Partners:
KCNAB1
Voltage-gated potassium channel subunit beta-1; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Modulates action potentials via its effect on the pore-forming alpha subunits (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Mediates closure of delayed rectifier potassium channels by physically obstructing the pore via its N-terminal domain and increases the speed of channel closure for other family members. Promotes the clos [...] (419 aa)
     
  0.932
KCNAB2
Voltage-gated potassium channel subunit beta-2; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Contributes to the regulation of nerve signaling, and prevents neuronal hyperexcitability (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Promotes potassium channel closure via a mechanism that does not involve physical obstruction of the channel pore. Promotes KCNA4 channel closure. Modulates the functional properties of KCNA5 [...] (415 aa)
     
  0.929
KCNAB3
Voltage-gated potassium channel subunit beta-3; Accessory potassium channel protein which modulates the activity of the pore-forming alpha subunit. Alters the functional properties of Kv1.5; Aldo-keto reductases (404 aa)
     
  0.924
NCALD
Neurocalcin-delta; May be involved in the calcium-dependent regulation of rhodopsin phosphorylation. Binds three calcium ions; EF-hand domain containing (193 aa)
     
    0.916
CLTC
Clathrin heavy chain 1; Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network. Acts as component of the TACC3/ch- TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter- microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension. Plays a role in early autophagosome formation; Belongs to the clathrin heavy chain [...] (1679 aa)
         
  0.900
AP2A1
AP-2 complex subunit alpha-1; Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin- coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold [...] (977 aa)
         
    0.900
AP1S1
AP-1 complex subunit sigma-1A; Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules (158 aa)
         
    0.900
AP1G2
AP-1 complex subunit gamma-like 2; May function in protein sorting in late endosomes or multivesucular bodies (MVBs). Involved in MVB-assisted maturation of hepatitis B virus (HBV); Clathrin/coatomer adaptor, adaptin-like, N-terminal domain containing (785 aa)
         
    0.900
AP2S1
AP-2 complex subunit sigma; Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein Transport via Transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin- coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold b [...] (142 aa)
         
    0.900
CLTA
Clathrin light chain A; Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Acts as component of the TACC3/ch- TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter- microtubule bridge (248 aa)
         
    0.900
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]