• Version:
  • 11.0 [archived version]
STRINGSTRING
GPSM2 GPSM2 GPSM1 GPSM1 GPSM3 GPSM3 CXCR2 CXCR2 GNAI3 GNAI3 GNAI2 GNAI2 GNAI1 GNAI1 GNAT3 GNAT3 RGS12 RGS12 GRASP GRASP RHPN1 RHPN1
"RGS12" - Regulator of G-protein signaling 12 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RGS12Regulator of G-protein signaling 12; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form; PDZ domain containing (1447 aa)    
Predicted Functional Partners:
GNAI1
Guanine nucleotide-binding protein G(i) subunit alpha-1; Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modulated by numer [...] (354 aa)
     
  0.986
GNAI3
Guanine nucleotide-binding protein G(k) subunit alpha; Heterotrimeric guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modul [...] (354 aa)
     
  0.980
GNAI2
Guanine nucleotide-binding protein G(i) subunit alpha-2; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase- they inhibit the cyclase in response to beta-adrenergic stimuli. May play a role in cell division (355 aa)
     
  0.950
GNAT3
Guanine nucleotide-binding protein G(t) subunit alpha-3; Guanine nucleotide-binding protein (G protein) alpha subunit playing a prominent role in bitter and sweet taste transduction as well as in umami (monosodium glutamate, monopotassium glutamate, and inosine monophosphate) taste transduction. Transduction by this alpha subunit involves coupling of specific cell-surface receptors with a cGMP-phosphodiesterase; Activation of phosphodiesterase lowers intracellular levels of cAMP and cGMP which may open a cyclic nucleotide-suppressible cation channel leading to influx of calcium, ultima [...] (354 aa)
     
  0.932
GPSM2
G-protein-signaling modulator 2; Plays an important role in mitotic spindle pole organization via its interaction with NUMA1. Required for cortical dynein- dynactin complex recruitment during metaphase. Plays a role in metaphase spindle orientation. Plays also an important role in asymmetric cell divisions. Has guanine nucleotide dissociation inhibitor (GDI) activity towards G(i) alpha proteins, such as GNAI1 and GNAI3, and thereby regulates their activity (By similarity); Deafness associated genes (684 aa)
     
 
  0.778
GPSM1
G-protein-signaling modulator 1; Guanine nucleotide dissociation inhibitor (GDI) which functions as a receptor-independent activator of heterotrimeric G- protein signaling. Keeps G(i/o) alpha subunit in its GDP-bound form thus uncoupling heterotrimeric G-proteins signaling from G protein-coupled receptors. Controls spindle orientation and asymmetric cell fate of cerebral cortical progenitors. May also be involved in macroautophagy in intestinal cells. May play a role in drug addiction; Belongs to the GPSM family (675 aa)
     
 
  0.773
RHPN1
Rhophilin-1; Has no enzymatic activity. May serve as a target for Rho, and interact with some cytoskeletal component upon Rho binding or relay a Rho signal to other molecules (By similarity); PDZ domain containing (670 aa)
           
  0.711
GPSM3
G-protein-signaling modulator 3; Interacts with subunit of G(i) alpha proteins and regulates the activation of G(i) alpha proteins (160 aa)
           
  0.698
CXCR2
C-X-C chemokine receptor type 2; Receptor for interleukin-8 which is a powerful neutrophil chemotactic factor. Binding of IL-8 to the receptor causes activation of neutrophils. This response is mediated via a G-protein that activates a phosphatidylinositol-calcium second messenger system. Binds to IL-8 with high affinity. Also binds with high affinity to CXCL3, GRO/MGSA and NAP-2 (360 aa)
       
 
  0.684
GRASP
General receptor for phosphoinositides 1-associated scaffold protein; Plays a role in intracellular trafficking and contributes to the macromolecular organization of group 1 metabotropic glutamate receptors (mGluRs) at synapses; PDZ domain containing (395 aa)
           
  0.641
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]