• Version:
  • 11.0 [archived version]
STRINGSTRING
ISG15 ISG15 HERC5 HERC5 UBE2E1 UBE2E1 UBA7 UBA7 UBE2E2 UBE2E2 UBE2A UBE2A UBE2L6 UBE2L6 HERC6 HERC6 DTX3L DTX3L CDC34 CDC34 UBE2B UBE2B
"UBA7" - Ubiquitin-like modifier-activating enzyme 7 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
UBA7Ubiquitin-like modifier-activating enzyme 7; Activates ubiquitin by first adenylating with ATP its C- terminal glycine residue and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin- E1 thioester and free AMP. Catalyzes the ISGylation of influenza A virus NS1 protein; Ubiquitin like modifier activating enzymes (1012 aa)    
Predicted Functional Partners:
ISG15
Ubiquitin-like protein ISG15; Ubiquitin-like protein which plays a key role in the innate immune response to viral infection either via its conjugation to a target protein (ISGylation) or via its action as a free or unconjugated protein. ISGylation involves a cascade of enzymatic reactions involving E1, E2, and E3 enzymes which catalyze the conjugation of ISG15 to a lysine residue in the target protein. Its target proteins include IFIT1, MX1/MxA, PPM1B, UBE2L6, UBA7, CHMP5, CHMP2A, CHMP4B and CHMP6. Can also isgylate- EIF2AK2/PKR which results in its activation, DDX58/RIG-I which inhib [...] (165 aa)
     
  0.998
UBE2L6
Ubiquitin/ISG15-conjugating enzyme E2 L6; Catalyzes the covalent attachment of ubiquitin or ISG15 to other proteins. Functions in the E6/E6-AP-induced ubiquitination of p53/TP53. Promotes ubiquitination and subsequent proteasomal degradation of FLT3; Ubiquitin conjugating enzymes E2 (153 aa)
   
  0.992
UBE2E2
Ubiquitin-conjugating enzyme E2 E2; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 11’- and ’Lys-48’-, as well as ’Lys-63’-linked polyubiquitination. Catalyzes the ISGylation of influenza A virus NS1 protein; Ubiquitin conjugating enzymes E2 (201 aa)
   
  0.987
HERC5
E3 ISG15--protein ligase HERC5; Major E3 ligase for ISG15 conjugation. Acts as a positive regulator of innate antiviral response in cells induced by interferon. Functions as part of the ISGylation machinery that recognizes target proteins in a broad and relatively non-specific manner. Catalyzes ISGylation of IRF3 which results in sustained activation, it attenuates IRF3-PIN1 interaction, which antagonizes IRF3 ubiquitination and degradation, and boosts the antiviral response. Catalyzes ISGylation of influenza A viral NS1 which attenuates virulence; ISGylated NS1 fails to form homodimer [...] (1024 aa)
     
 
  0.980
UBE2E1
Ubiquitin-conjugating enzyme E2 E1; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. Catalyzes the covalent attachment of ISG15 to other proteins. Mediates the selective degradation of short-lived and abnormal proteins. In vitro also catalyzes ’Lys-48’-linked polyubiquitination; Belongs to the ubiquitin-conjugating enzyme family (193 aa)
   
  0.980
CDC34
Ubiquitin-conjugating enzyme E2 R1; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 48’-linked polyubiquitination. Cooperates with the E2 UBCH5C and the SCF(FBXW11) E3 ligase complex for the polyubiquitination of NFKBIA leading to its subsequent proteasomal degradation. Performs ubiquitin chain elongation building ubiquitin chains from the UBE2D3-primed NFKBIA-linked ubiquitin. UBE2D3 acts as an initiator E2, priming the phosphorylated NFKBIA target at positions ’Lys-21’ and/or ’Lys-22’ with a monoubiquitin. Cooper [...] (236 aa)
   
  0.975
HERC6
Probable E3 ubiquitin-protein ligase HERC6; E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (1022 aa)
     
 
  0.974
DTX3L
E3 ubiquitin-protein ligase DTX3L; E3 ubiquitin-protein ligase which, in association with ADP-ribosyltransferase PARP9, plays a role in DNA damage repair and in interferon-mediated antiviral responses. Monoubiquitinates several histones, including histone H2A, H2B, H3 and H4. In response to DNA damage, mediates monoubiquitination of ’Lys-91’ of histone H4 (H4K91ub1). The exact role of H4K91ub1 in DNA damage response is still unclear but it may function as a licensing signal for additional histone H4 post-translational modifications such as H4 ’Lys-20’ methylation (H4K20me). PARP1-depen [...] (740 aa)
     
 
  0.973
UBE2B
Ubiquitin-conjugating enzyme E2 B; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In association with the E3 enzyme BRE1 (RNF20 and/or RNF40), it plays a role in transcription regulation by catalyzing the monoubiquitination of histone H2B at ’Lys-120’ to form H2BK120ub1. H2BK120ub1 gives a specific tag for epigenetic transcriptional activation, elongation by RNA polymerase II, telomeric silencing, and is also a prerequisite for H3K4me and H3K79me formation. In vitro catalyzes ’Lys-11’-, as well as ’Lys-48’- and ’Lys-63’-linked polyubiquit [...] (152 aa)
   
  0.973
UBE2A
Ubiquitin-conjugating enzyme E2 A; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In association with the E3 enzyme BRE1 (RNF20 and/or RNF40), it plays a role in transcription regulation by catalyzing the monoubiquitination of histone H2B at ’Lys-120’ to form H2BK120ub1. H2BK120ub1 gives a specific tag for epigenetic transcriptional activation, elongation by RNA polymerase II, telomeric silencing, and is also a prerequisite for H3K4me and H3K79me formation. In vitro catalyzes ’Lys-11’, as well as ’Lys-48’-linked polyubiquitination. Requir [...] (152 aa)
   
  0.972
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]