• Version:
  • 11.0 [archived version]
STRINGSTRING
NDUFS3 NDUFS3 NDUFAF4 NDUFAF4 NDUFAF3 NDUFAF3 MT-ND6 MT-ND6 NDUFS2 NDUFS2 NDUFAF5 NDUFAF5 NDUFAF1 NDUFAF1 NDUFS7 NDUFS7 NDUFS8 NDUFS8 ACAD9 ACAD9 NDUFB10 NDUFB10
"NDUFAF3" - NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 3 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
NDUFAF3NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 3; Essential factor for the assembly of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I) (184 aa)    
Predicted Functional Partners:
NDUFAF4
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 4; Involved in the assembly of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I). May be involved in cell proliferation and survival of hormone-dependent tumor cells. May be a regulator of breast tumor cell invasion (175 aa)
     
  0.999
NDUFS3
NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity); NADH-ubiquinone oxidoreductase core subunits (264 aa)
     
  0.999
NDUFS2
NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (463 aa)
     
  0.999
NDUFAF1
Complex I intermediate-associated protein 30, mitochondrial; Chaperone protein involved in the assembly of the mitochondrial NADH-ubiquinone oxidoreductase complex (complex I); Belongs to the CIA30 family (327 aa)
     
  0.998
NDUFAF5
Arginine-hydroxylase NDUFAF5, mitochondrial; Arginine hydroxylase involved in the assembly of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I, MT-ND1) at early stages. Acts by mediating hydroxylation of ’Arg-111’ of NDUFS7. May also have methyltransferase activity (Probable) (345 aa)
     
  0.996
ACAD9
Acyl-CoA dehydrogenase family member 9, mitochondrial; Required for mitochondrial complex I assembly. Has a dehydrogenase activity on palmitoyl-CoA (C16-0) and stearoyl-CoA (C18-0). It is three times more active on palmitoyl-CoA than on stearoyl-CoA. However, it does not play a primary role in long-chain fatty acid oxidation in vivo. Has little activity on octanoyl-CoA (C8-0), butyryl-CoA (C4-0) or isovaleryl-CoA (5-0); Belongs to the acyl-CoA dehydrogenase family (621 aa)
     
  0.995
NDUFS8
NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone; NADH-ubiquinone oxidoreductase core subunits (210 aa)
     
  0.994
NDUFB10
NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (172 aa)
     
  0.993
MT-ND6
NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity); NADH-ubiquinone oxidoreductase core subunits (174 aa)
       
  0.993
NDUFS7
NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (213 aa)
     
  0.990
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]