• Version:
  • 11.0 [archived version]
STRINGSTRING
SRP9 SRP9 SRP19 SRP19 RPL24 RPL24 RPL31 RPL31 RPL23A RPL23A SRP54 SRP54 SRP14 SRP14 RPL18A RPL18A RPL3 RPL3 SRP72 SRP72 SRP68 SRP68
"SRP68" - Signal recognition particle subunit SRP68 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SRP68Signal recognition particle subunit SRP68; Signal-recognition-particle assembly has a crucial role in targeting secretory proteins to the rough endoplasmic reticulum membrane. SRP68 binds the 7S RNA, SRP72 binds to this complex subsequently. This ribonucleoprotein complex might interact directly with the docking protein in the ER membrane and possibly participate in the elongation arrest function (627 aa)    
Predicted Functional Partners:
SRP72
Signal recognition particle subunit SRP72; Signal-recognition-particle assembly has a crucial role in targeting secretory proteins to the rough endoplasmic reticulum membrane. Binds the 7S RNA only in presence of SRP68. This ribonucleoprotein complex might interact directly with the docking protein in the ER membrane and possibly participate in the elongation arrest function; Belongs to the SRP72 family (671 aa)
     
  0.999
SRP14
Signal recognition particle 14 kDa protein; Signal-recognition-particle assembly has a crucial role in targeting secretory proteins to the rough endoplasmic reticulum membrane. SRP9 together with SRP14 and the Alu portion of the SRP RNA, constitutes the elongation arrest domain of SRP. The complex of SRP9 and SRP14 is required for SRP RNA binding (136 aa)
     
  0.999
SRP54
Signal recognition particle 54 kDa protein; Binds to the signal sequence of presecretory protein when they emerge from the ribosomes and transfers them to TRAM (translocating chain-associating membrane protein) (504 aa)
     
  0.999
SRP19
Signal recognition particle 19 kDa protein; Signal-recognition-particle assembly, binds directly to 7S RNA and mediates binding of the 54 kDa subunit of the SRP (144 aa)
     
  0.999
SRP9
Signal recognition particle 9 kDa protein; Signal-recognition-particle assembly has a crucial role in targeting secretory proteins to the rough endoplasmic reticulum membrane. SRP9 together with SRP14 and the Alu portion of the SRP RNA, constitutes the elongation arrest domain of SRP. The complex of SRP9 and SRP14 is required for SRP RNA binding (86 aa)
     
  0.999
RPL18A
Ribosomal protein L18a (176 aa)
     
    0.991
RPL23A
60S ribosomal protein L23a; This protein binds to a specific region on the 26S rRNA; Belongs to the universal ribosomal protein uL23 family (156 aa)
     
  0.989
RPL31
Ribosomal protein L31 (128 aa)
     
  0.988
RPL24
Ribosomal protein L24; Belongs to the eukaryotic ribosomal protein eL24 family (157 aa)
     
  0.987
RPL3
60S ribosomal protein L3; The L3 protein is a component of the large subunit of cytoplasmic ribosomes; L ribosomal proteins (403 aa)
     
  0.986
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]