• Version:
  • 11.0 [archived version]
STRINGSTRING
GNGT1 GNGT1 GNG7 GNG7 CCR10 CCR10 GNAI1 GNAI1 GNAI3 GNAI3 GNAT3 GNAT3 GNG13 GNG13 GRM6 GRM6 GNAI2 GNAI2 PCP2 PCP2 GNB5 GNB5
"PCP2" - Purkinje cell protein 2 homolog in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PCP2Purkinje cell protein 2 homolog; May function as a cell-type specific modulator for G protein-mediated cell signaling (136 aa)    
Predicted Functional Partners:
GNAI2
Guanine nucleotide-binding protein G(i) subunit alpha-2; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase- they inhibit the cyclase in response to beta-adrenergic stimuli. May play a role in cell division (355 aa)
     
  0.966
GNAI1
Guanine nucleotide-binding protein G(i) subunit alpha-1; Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modulated by numer [...] (354 aa)
     
  0.952
GRM6
Metabotropic glutamate receptor 6; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity (By similarity). Signaling stimulates TRPM1 channel activity and Ca(2+) uptake. Required for normal vision; Glutamate metabotropic receptors (877 aa)
         
  0.949
GNAI3
Guanine nucleotide-binding protein G(k) subunit alpha; Heterotrimeric guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modul [...] (354 aa)
     
  0.940
GNAT3
Guanine nucleotide-binding protein G(t) subunit alpha-3; Guanine nucleotide-binding protein (G protein) alpha subunit playing a prominent role in bitter and sweet taste transduction as well as in umami (monosodium glutamate, monopotassium glutamate, and inosine monophosphate) taste transduction. Transduction by this alpha subunit involves coupling of specific cell-surface receptors with a cGMP-phosphodiesterase; Activation of phosphodiesterase lowers intracellular levels of cAMP and cGMP which may open a cyclic nucleotide-suppressible cation channel leading to influx of calcium, ultima [...] (354 aa)
     
  0.928
GNB5
Guanine nucleotide-binding protein subunit beta-5; Enhances GTPase-activating protein (GAP) activity of regulator of G protein signaling (RGS) proteins, hence involved in the termination of the signaling initiated by the G protein coupled receptors (GPCRs) by accelerating the GTP hydrolysis on the G-alpha subunits, thereby promoting their inactivation (Probable). Increases RGS9 GTPase-activating protein (GAP) activity, hence contributes to the deactivation of G protein signaling initiated by D(2) dopamine receptors. May play an important role in neuronal signaling, including in the par [...] (395 aa)
         
  0.927
GNG7
Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction. Plays a role in the regulation of adenylyl cyclase signaling in certain regions of the brain. Plays a role in the formation or stabilzation of a G protein heterotrimer (G(olf) subunit alpha-beta-gamma-7) that is required for adenylyl cyclase activity in [...] (68 aa)
     
 
  0.923
CCR10
C-C chemokine receptor type 10; Receptor for chemokines SCYA27 and SCYA28. Subsequently transduces a signal by increasing the intracellular calcium ions level and stimulates chemotaxis in a pre-B cell line; Belongs to the G-protein coupled receptor 1 family (362 aa)
         
  0.919
GNGT1
Guanine nucleotide-binding protein G(T) subunit gamma-T1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (74 aa)
         
  0.914
GNG13
Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-13; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (67 aa)
     
 
  0.911
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]