• Version:
  • 11.0 [archived version]
STRINGSTRING
PAPSS2 PAPSS2 CHST10 CHST10 SULT2A1 SULT2A1 SHROOM4 SHROOM4 SULT1B1 SULT1B1 UGT1A8 UGT1A8 ASGR1 ASGR1 UGT1A6 UGT1A6 UGT1A1 UGT1A1 CYP3A5 CYP3A5 SULT2B1 SULT2B1
"SULT1B1" - Sulfotransferase family cytosolic 1B member 1 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SULT1B1Sulfotransferase family cytosolic 1B member 1; Sulfotransferase that utilizes 3’-phospho-5’-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of many hormones, neurotransmitters, drugs and xenobiotic compounds. Sulfonation increases the water solubility of most compounds, and therefore their renal excretion, but it can also result in bioactivation to form active metabolites. Sulfates dopamine, small phenols such as 1-naphthol and p-nitrophenol and thyroid hormones, including 3,3’-diiodothyronine, triidothyronine, reverse triiodothyronine and thyroxine; Sulf [...] (296 aa)    
Predicted Functional Partners:
SULT2A1
Bile salt sulfotransferase; Sulfotransferase that utilizes 3’-phospho-5’-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfonation of steroids and bile acids in the liver and adrenal glands; Sulfotransferases, cytosolic (285 aa)
   
 
0.618
CHST10
Carbohydrate sulfotransferase 10; Catalyzes the transfer of sulfate to position 3 of terminal glucuronic acid of both protein- and lipid-linked oligosaccharides. Participates in biosynthesis of HNK-1 carbohydrate structure, a sulfated glucuronyl-lactosaminyl residue carried by many neural recognition molecules, which is involved in cell interactions during ontogenetic development and in synaptic plasticity in the adult. May be indirectly involved in synapse plasticity of the hippocampus, via its role in HNK-1 biosynthesis; Sulfotransferases, membrane bound (356 aa)
     
   
  0.540
UGT1A6
UDP-glucuronosyltransferase 1-6; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols. Isoform 3 lacks transferase activity but acts as a negative regulator of isoform 1 (By similarity); Belongs to the UDP-glycosyltransferase family (532 aa)
 
 
   
  0.533
SULT2B1
Sulfotransferase family cytosolic 2B member 1; Sulfotransferase that utilizes 3’-phospho-5’-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of many hormones, neurotransmitters, drugs and xenobiotic compounds. Sulfonation increases the water solubility of most compounds, and therefore their renal excretion, but it can also result in bioactivation to form active metabolites. Sulfates hydroxysteroids like DHEA. Isoform 1 preferentially sulfonates cholesterol, and isoform 2 avidly sulfonates pregnenolone but not cholesterol. Plays a role in epidermal choleste [...] (365 aa)
   
 
 
0.525
UGT1A8
UDP-glucuronosyltransferase 1-1; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX- alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate. Is also able to catalyze the glucuronidation of 17beta-estradiol, 17alpha-ethinylestradiol, 1-hydroxypyrene, 4- methylumbelliferone, 1-naphthol, paranitrophenol, scopoletin, and umbelliferone. Isoform 2 lacks transferase activity but acts as a negative regulator of isoform 1; Belongs to the UDP-gly [...] (533 aa)
 
 
   
  0.518
UGT1A1
UDP-glucuronosyltransferase 1-8; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX- alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate. Is also able to catalyze the glucuronidation of 17beta-estradiol, 17alpha-ethinylestradiol, 1-hydroxypyrene, 4- methylumbelliferone, 1-naphthol, paranitrophenol, scopoletin, and umbelliferone. Isoform 2 lacks transferase activity but acts as a negative regulator of isoform 1 (530 aa)
 
 
   
  0.514
ASGR1
Asialoglycoprotein receptor 1; Mediates the endocytosis of plasma glycoproteins to which the terminal sialic acid residue on their complex carbohydrate moieties has been removed. The receptor recognizes terminal galactose and N-acetylgalactosamine units. After ligand binding to the receptor, the resulting complex is internalized and transported to a sorting organelle, where receptor and ligand are disassociated. The receptor then returns to the cell membrane surface; C-type lectin domain containing (291 aa)
     
   
  0.507
SHROOM4
Protein Shroom4; Probable regulator of cytoskeletal architecture that plays an important role in development. May regulate cellular and cytoskeletal architecture by modulating the spatial distribution of myosin II (By similarity); Belongs to the shroom family (1493 aa)
           
  0.480
CYP3A5
Cytochrome P450 3A5; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (502 aa)
     
   
  0.473
PAPSS2
Bifunctional 3’-phosphoadenosine 5’-phosphosulfate synthase 2; Bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5’-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3’-phosphoadenylylsulfate (PAPS- activated sulfate donor used by sulfotransferase). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate- activation pathway. May have [...] (619 aa)
     
   
  0.465
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]