• Version:
  • 11.0 [archived version]
STRINGSTRING
GABBR2 GABBR2 RXFP4 RXFP4 HTR1A HTR1A HRH3 HRH3 GRM3 GRM3 OXER1 OXER1 GNG13 GNG13 GRM6 GRM6 HTR1E HTR1E GNG3 GNG3 HTR5A HTR5A
"HTR1E" - 5-hydroxytryptamine receptor 1E in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
HTR1E5-hydroxytryptamine receptor 1E; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various alkaloids and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity (365 aa)    
Predicted Functional Partners:
HTR5A
5-hydroxytryptamine receptor 5A; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. The activity of this receptor is mediated by G proteins; 5-hydroxytryptamine receptors, G protein-coupled (357 aa)
     
 
0.945
HRH3
Histamine H3 receptor; The H3 subclass of histamine receptors could mediate the histamine signals in CNS and peripheral nervous system. Signals through the inhibition of adenylate cyclase and displays high constitutive activity (spontaneous activity in the absence of agonist). Agonist stimulation of isoform 3 neither modified adenylate cyclase activity nor induced intracellular calcium mobilization (445 aa)
     
 
0.937
RXFP4
Relaxin-3 receptor 2; High affinity receptor for INSL5. Also acts as receptor for RLN3/relaxin-3, as well as bradykinin and kallidin. Binding of the ligand inhibit cAMP accumulation; Belongs to the G-protein coupled receptor 1 family (374 aa)
         
  0.931
GNG13
Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-13; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (67 aa)
     
    0.928
GRM3
Metabotropic glutamate receptor 3; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Signaling inhibits adenylate cyclase activity; Glutamate metabotropic receptors (879 aa)
     
  0.928
HTR1A
5-hydroxytryptamine receptor 1A; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second [...] (422 aa)
     
 
0.928
GNG3
Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (75 aa)
     
    0.927
OXER1
Oxoeicosanoid receptor 1; Receptor for eicosanoids and polyunsaturated fatty acids such as 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-OXO-ETE), 5(S)-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5(S)-HPETE) and arachidonic acid. Seems to be coupled to the G(i)/G(o), families of heteromeric G proteins (423 aa)
         
  0.925
GRM6
Metabotropic glutamate receptor 6; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity (By similarity). Signaling stimulates TRPM1 channel activity and Ca(2+) uptake. Required for normal vision; Glutamate metabotropic receptors (877 aa)
       
  0.922
GABBR2
Gamma-aminobutyric acid type B receptor subunit 2; Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-depend [...] (941 aa)
     
 
  0.921
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]