• Version:
  • 11.0 [archived version]
STRINGSTRING
PLCB1 PLCB1 PLCG2 PLCG2 PLCG1 PLCG1 TRPC1 TRPC1 MRVI1 MRVI1 ITPR1 ITPR1 ORAI1 ORAI1 STIM1 STIM1 HTT HTT ORAI2 ORAI2 AHCYL1 AHCYL1
"ITPR1" - Inositol 1,4,5-trisphosphate receptor type 1 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ITPR1Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity); Inositol 1,4,5-triphosphate receptors (2743 aa)    
Predicted Functional Partners:
AHCYL1
S-adenosylhomocysteine hydrolase-like protein 1; Multifaceted cellular regulator which coordinates several essential cellular functions including regulation of epithelial HCO3(-) and fluid secretion, mRNA processing and DNA replication. Regulates ITPR1 sensitivity to inositol 1,4,5- trisphosphate competing for the common binding site and acting as endogenous ’pseudoligand’ whose inhibitory activity can be modulated by its phosphorylation status. In the pancreatic and salivary ducts, at resting state, attenuates inositol 1,4,5- trisphosphate-induced calcium release by interacting with I [...] (530 aa)
       
  0.984
MRVI1
Protein MRVI1; Plays a role as NO/PRKG1-dependent regulator of IP3- induced calcium release; its phosphorylation by PRKG1 inhibits bradykinin and IP3-induced calcium release from intracellular stores. Recruits PRKG1 to the endoplasmic reticulum and may mediate the assembly of PRKG1 and ITPR1 in a macrocomplex. Involved in PRKG1 signaling cascade leading to inhibition of platelet activation and aggregation. Mediates also NO-dependent inhibition of calcium signaling in gastrointestinal smooth muscle contributing to NO-dependent relaxation (912 aa)
     
  0.982
STIM1
Stromal interaction molecule 1; Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release-activated Ca(2+) (CRAC) channel subunit ORAI1. Involved in enamel formation. Activated following interaction with STIMATE, leading to promote STIM1 conformational switch; Sterile alpha motif domain containing (791 aa)
       
  0.982
TRPC1
Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G-protein coupled receptors. Seems to be also activated by intracellular calcium store depletion; Transient receptor potential cation channels (793 aa)
     
  0.979
ORAI1
Calcium release-activated calcium channel protein 1; Ca(2+) release-activated Ca(2+) (CRAC) channel subunit which mediates Ca(2+) influx following depletion of intracellular Ca(2+) stores and channel activation by the Ca(2+) sensor, STIM1. CRAC channels are the main pathway for Ca(2+) influx in T-cells and promote the immune response to pathogens by activating the transcription factor NFAT; Belongs to the Orai family (301 aa)
         
  0.973
ORAI2
Protein orai-2; Ca(2+) release-activated Ca(2+)-like (CRAC-like) channel subunit which mediates Ca(2+) influx and increase in Ca(2+)- selective current by synergy with the Ca(2+) sensor, STIM1; ORAI calcium release-activated calcium modulators (254 aa)
         
  0.964
HTT
Huntingtin; May play a role in microtubule-mediated transport or vesicle function; Belongs to the huntingtin family (3142 aa)
     
  0.960
PLCG1
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1; Mediates the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Plays an important role in the regulation of intracellular signaling cascades. Becomes activated in response to ligand- mediated activation of receptor-type tyrosine kinases, such as PDGFRA, PDGFRB, FGFR1, FGFR2, FGFR3 and FGFR4. Plays a role in actin reorganization and cell migration; C2 domain containing phospholipases (1291 aa)
     
  0.957
PLCB1
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1; The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes; C2 domain containing phospholipases (1216 aa)
     
  0.956
PLCG2
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2; The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. It is a crucial enzyme in transmembrane signaling; C2 domain containing phospholipases (1265 aa)
     
  0.950
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]