• Version:
  • 11.0 [archived version]
STRINGSTRING
B3GNT3 B3GNT3 ABO ABO ST3GAL4 ST3GAL4 FUT2 FUT2 FUT1 FUT1 FUT3 FUT3 B3GALT5 B3GALT5 B4GALT1 B4GALT1 ST3GAL6 ST3GAL6 B3GALT1 B3GALT1 ST8SIA1 ST8SIA1
"FUT3" - Galactoside 3(4)-L-fucosyltransferase in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FUT3Galactoside 3(4)-L-fucosyltransferase; May catalyze alpha-1,3 and alpha-1,4 glycosidic linkages involved in the expression of Vim-2, Lewis A, Lewis B, sialyl Lewis X and Lewis X/SSEA-1 antigens. May be involved in blood group Lewis determination; Lewis-positive (Le(+)) individuals have an active enzyme while Lewis-negative (Le(-)) individuals have an inactive enzyme. Also acts on the corresponding 1,4-galactosyl derivative, forming 1,3-L-fucosyl links (361 aa)    
Predicted Functional Partners:
FUT2
Galactoside 2-alpha-L-fucosyltransferase 2; Mediates the transfer of fucose to the terminal galactose on glycan chains of cell surface glycoproteins and glycolipids. The resulting epitope plays a role in cell-cell interaction including host-microbe interaction. Mediates interaction with intestinal microbiota influencing its composition. Creates a soluble precursor oligosaccharide FuC-alpha ((1,2)Galbeta-) called the H antigen which is an essential substrate for the final step in the soluble ABO blood group antigen synthesis pathway; Belongs to the glycosyltransferase 11 family (343 aa)
     
 
  0.983
FUT1
Galactoside 2-alpha-L-fucosyltransferase 1; Creates a soluble precursor oligosaccharide FuC-alpha ((1,2)Gal-beta-) called the H antigen which is an essential substrate for the final step in the soluble A and B antigen synthesis pathway; Blood group antigens (365 aa)
         
  0.978
ST3GAL4
CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 4; Catalyzes the formation of the NeuAc-alpha-2,3-Gal-beta- 1,4-GlcNAc-, and NeuAc-alpha-2,3-Gal-beta-1,3-GlcNAc- sequences found in terminal carbohydrate groups of glycoproteins and glycolipids. It may be involved in the biosynthesis of the sialyl Lewis X determinant; Belongs to the glycosyltransferase 29 family (333 aa)
         
  0.957
ST3GAL6
Type 2 lactosamine alpha-2,3-sialyltransferase; Involved in the synthesis of sialyl-paragloboside, a precursor of sialyl-Lewis X determinant. Has a alpha-2,3- sialyltransferase activity toward Gal-beta1,4-GlcNAc structure on glycoproteins and glycolipids. Has a restricted substrate specificity, it utilizes Gal-beta1,4-GlcNAc on glycoproteins, and neolactotetraosylceramide and neolactohexaosylceramide, but not lactotetraosylceramide, lactosylceramide or asialo-GM1; Belongs to the glycosyltransferase 29 family (384 aa)
         
  0.955
B3GALT5
Beta-1,3-galactosyltransferase 5; Catalyzes the transfer of Gal to GlcNAc-based acceptors with a preference for the core3 O-linked glycan GlcNAc(beta1,3)GalNAc structure. Can use glycolipid LC3Cer as an efficient acceptor; Belongs to the glycosyltransferase 31 family (314 aa)
     
 
  0.946
ST8SIA1
Alpha-N-acetylneuraminide alpha-2,8-sialyltransferase; Involved in the production of gangliosides GD3 and GT3 from GM3; gangliosides are a subfamily of complex glycosphinglolipds that contain one or more residues of sialic acid; Sialyltransferases (356 aa)
         
  0.945
B3GNT3
N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 3; Beta-1,3-N-acetylglucosaminyltransferase involved in the synthesis of poly-N-acetyllactosamine. Has activity for type 2 oligosaccharides. Also acts as a core1-1,3-N- acetylglucosaminyltransferase (Core1-beta3GlcNAcT) to form the 6- sulfo sialyl Lewis x on extended core1 O-glycans; Belongs to the glycosyltransferase 31 family (372 aa)
     
 
  0.938
ABO
Histo-blood group ABO system transferase; This protein is the basis of the ABO blood group system. The histo-blood group ABO involves three carbohydrate antigens- A, B, and H. A, B, and AB individuals express a glycosyltransferase activity that converts the H antigen to the A antigen (by addition of UDP-GalNAc) or to the B antigen (by addition of UDP-Gal), whereas O individuals lack such activity (373 aa)
     
 
  0.934
B4GALT1
Beta-1,4-galactosyltransferase 1; The Golgi complex form catalyzes the production of lactose in the lactating mammary gland and could also be responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins as well as the carbohydrate moieties of glycolipids; Beta 4-glycosyltransferases (398 aa)
     
 
  0.933
B3GALT1
Beta-1,3-galactosyltransferase 1; Beta-1,3-galactosyltransferase that transfers galactose from UDP-alpha-D-galactose to substrates with a terminal beta-N- acetylglucosamine (beta-GlcNAc) residue. Involved in the biosynthesis of the carbohydrate moieties of glycolipids and glycoproteins. Inactive towards substrates with terminal alpha-N- acetylglucosamine (alpha-GlcNAc) or alpha-N-acetylgalactosamine (alpha-GalNAc) residues (326 aa)
     
 
  0.932
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]