• Version:
  • 11.0 [archived version]
STRINGSTRING
MIEF2 MIEF2 MFN1 MFN1 MFN2 MFN2 OPA1 OPA1 TOMM20 TOMM20 GDAP1 GDAP1 FIS1 FIS1 DNM1L DNM1L MARCH5 MARCH5 MFF MFF MIEF1 MIEF1
"MFF" - Mitochondrial fission factor in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MFFMitochondrial fission factor; Plays a role in mitochondrial and peroxisomal fission. Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface. May be involved in regulation of synaptic vesicle membrane dynamics by recruitment of DNM1L to clathrin-containing vesicles (342 aa)    
Predicted Functional Partners:
DNM1L
Dynamin-1-like protein; Functions in mitochondrial and peroxisomal division. Mediates membrane fission through oligomerization into membrane- associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism. Through its function in mitochondrial division, ensures the survival of at least some types of postmitotic neurons, including Purkinje cells, by suppressing oxidative damage. Required for normal brain development, including that of cerebellum. Facilitates developmentally regulated apoptos [...] (749 aa)
       
 
  0.951
MIEF2
Mitochondrial dynamics protein MID49; Mitochondrial outer membrane protein which regulates mitochondrial fission. Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface independently of the mitochondrial fission FIS1 and MFF proteins. Regulates DNM1L GTPase activity (465 aa)
           
  0.905
MIEF1
Mitochondrial dynamics protein MID51; Mitochondrial outer membrane protein which regulates mitochondrial fission. Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface independently of the mitochondrial fission FIS1 and MFF proteins. Regulates DNM1L GTPase activity and DNM1L oligomerization. Binds ADP and can also bind GDP, although with lower affinity. Does not bind CDP, UDP, ATP, AMP or GTP. Inhibits DNM1L GTPase activity in the absence of bound ADP. Requires ADP to stimulate DNM1L GTPase activity and the assem [...] (463 aa)
           
  0.896
FIS1
Mitochondrial fission 1 protein; Involved in the fragmentation of the mitochondrial network and its perinuclear clustering. Plays a minor role in the recruitment and association of the fission mediator dynamin- related protein 1 (DNM1L) to the mitochondrial surface and mitochondrial fission. Can induce cytochrome c release from the mitochondrion to the cytosol, ultimately leading to apoptosis. Also mediates peroxisomal fission; Belongs to the FIS1 family (152 aa)
           
  0.895
MFN1
Mitofusin-1; Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Membrane clustering requires GTPase activity. It may involve a major rearrangement of the coiled coil domains. Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events. Overexpression induces the formation of mitochondrial networks (in vitro). Has low GTPase activity (741 aa)
       
 
  0.868
MFN2
Mitofusin-2; Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events. Overexpression induces the formation of mitochondrial networks. Membrane clustering requires GTPase activity and may involve a major rearrangement of the coiled coil domains (Probable). Plays a central role in mitochondrial metabolism and may be associated with obesity and/or apoptosis processes (By similarity). Plays an important role in the [...] (757 aa)
     
 
  0.835
OPA1
Dynamin-like 120 kDa protein, mitochondrial; Dynamin-related GTPase that is essential for normal mitochondrial morphology by regulating the equilibrium between mitochondrial fusion and mitochondrial fission. Coexpression of isoform 1 with shorter alternative products is required for optimal activity in promoting mitochondrial fusion. Binds lipid membranes enriched in negatively charged phospholipids, such as cardiolipin, and promotes membrane tubulation. The intrinsic GTPase activity is low, and is strongly increased by interaction with lipid membranes. Plays a role in remodeling crist [...] (997 aa)
     
 
  0.811
MARCH5
E3 ubiquitin-protein ligase MARCH5; Mitochondrial E3 ubiquitin-protein ligase that plays a crucial role in the control of mitochondrial morphology by acting as a positive regulator of mitochondrial fission. May play a role in the prevention of cell senescence acting as a regulator of mitochondrial quality control. Promotes ubiquitination of FIS1, DNM1L and MFN1; Membrane associated ring-CH-type fingers (278 aa)
     
   
  0.707
GDAP1
Ganglioside-induced differentiation-associated protein 1; Regulates the mitochondrial network by promoting mitochondrial fission (358 aa)
           
  0.686
TOMM20
Mitochondrial import receptor subunit TOM20 homolog; Central component of the receptor complex responsible for the recognition and translocation of cytosolically synthesized mitochondrial preproteins. Together with TOM22 functions as the transit peptide receptor at the surface of the mitochondrion outer membrane and facilitates the movement of preproteins into the TOM40 translocation pore (By similarity); Belongs to the Tom20 family (145 aa)
       
 
  0.686
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]