• Version:
  • 11.0 [archived version]
STRINGSTRING
TYMS TYMS DUT DUT PCNA PCNA RRM2 RRM2 MCM6 MCM6 MCM3 MCM3 RRM2B RRM2B MCM4 MCM4 RRM1 RRM1 MCM2 MCM2 MCM7 MCM7
"RRM1" - Ribonucleoside-diphosphate reductase large subunit in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RRM1Ribonucleoside-diphosphate reductase large subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (792 aa)    
Predicted Functional Partners:
RRM2
Ribonucleoside-diphosphate reductase subunit M2; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. Inhibits Wnt signaling; Belongs to the ribonucleoside diphosphate reductase small chain family (449 aa)
   
  0.999
RRM2B
Ribonucleoside-diphosphate reductase subunit M2 B; Plays a pivotal role in cell survival by repairing damaged DNA in a p53/TP53-dependent manner. Supplies deoxyribonucleotides for DNA repair in cells arrested at G1 or G2. Contains an iron-tyrosyl free radical center required for catalysis. Forms an active ribonucleotide reductase (RNR) complex with RRM1 which is expressed both in resting and proliferating cells in response to DNA damage (351 aa)
   
  0.999
MCM4
DNA replication licensing factor MCM4; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (863 aa)
     
 
  0.984
TYMS
Thymidylate synthase; Contributes to the de novo mitochondrial thymidylate biosynthesis pathway (313 aa)
   
   
  0.982
PCNA
Proliferating cell nuclear antigen; Auxiliary protein of DNA polymerase delta and is involved in the control of eukaryotic DNA replication by increasing the polymerase’s processibility during elongation of the leading strand. Induces a robust stimulatory effect on the 3’- 5’ exonuclease and 3’-phosphodiesterase, but not apurinic- apyrimidinic (AP) endonuclease, APEX2 activities. Has to be loaded onto DNA in order to be able to stimulate APEX2. Plays a key role in DNA damage response (DDR) by being conveniently positioned at the replication fork to coordinate DNA replication with DNA re [...] (261 aa)
     
   
  0.980
MCM6
DNA replication licensing factor MCM6; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (821 aa)
     
 
  0.980
DUT
Deoxyuridine 5’-triphosphate nucleotidohydrolase, mitochondrial; This enzyme is involved in nucleotide metabolism- it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family (252 aa)
   
   
  0.977
MCM3
DNA replication licensing factor MCM3; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (853 aa)
     
 
  0.977
MCM2
DNA replication licensing factor MCM2; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (904 aa)
     
 
  0.976
MCM7
DNA replication licensing factor MCM7; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (719 aa)
     
 
  0.975
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]