• Version:
  • 11.0 [archived version]
STRINGSTRING
CYP2A6 CYP2A6 CYP2E1 CYP2E1 PTGES3 PTGES3 CBR3 CBR3 CYP1A1 CYP1A1 PTGES2 PTGES2 CYP2D6 CYP2D6 CBR1 CBR1 PTGES PTGES CYP3A4 CYP3A4 CYP2A13 CYP2A13
"CBR3" - Carbonyl reductase [NADPH] 3 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CBR3Carbonyl reductase [NADPH] 3; Has low NADPH-dependent oxidoreductase activity towards 4-benzoylpyridine and menadione (in vitro); Belongs to the short-chain dehydrogenases/reductases (SDR) family (277 aa)    
Predicted Functional Partners:
CBR1
Carbonyl reductase [NADPH] 1; NADPH-dependent reductase with broad substrate specificity. Catalyzes the reduction of a wide variety of carbonyl compounds including quinones, prostaglandins, menadione, plus various xenobiotics. Catalyzes the reduction of the antitumor anthracyclines doxorubicin and daunorubicin to the cardiotoxic compounds doxorubicinol and daunorubicinol. Can convert prostaglandin E2 to prostaglandin F2-alpha. Can bind glutathione, which explains its higher affinity for glutathione-conjugated substrates. Catalyzes the reduction of S-nitrosoglutathione; Short chain dehy [...] (277 aa)
   
0.947
CYP2D6
Cytochrome P450 2D6; Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants; Cytochrome P450 family 2 (497 aa)
       
  0.937
CYP3A4
Cytochrome P450 3A4; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1’-hydroxylation and midazolam 4- hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2- exo-monooxygenase. The enzyme also hydroxylates etoposide. Catalyzes 4-beta-hydroxylation of cholesterol. May catalyze 25-hydroxylation of chol [...] (503 aa)
       
  0.921
CYP1A1
Cytochrome P450 1A1; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (512 aa)
       
  0.915
CYP2E1
Cytochrome P450 2E1; Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms; Cytochrome P450 family 2 (493 aa)
       
  0.913
CYP2A13
Cytochrome P450 2A13; Exhibits a coumarin 7-hydroxylase activity. Active in the metabolic activation of hexamethylphosphoramide, N,N- dimethylaniline, 2’-methoxyacetophenone, N- nitrosomethylphenylamine, and the tobacco-specific carcinogen, 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone. Possesses phenacetin O-deethylation activity; Cytochrome P450 family 2 (494 aa)
       
  0.906
CYP2A6
Cytochrome P450 2A6; Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4- cineole 2-exo-monooxygenase. Possesses low phenacetin O- deethylation activity; Cytochrome P450 family 2 (494 aa)
       
  0.906
PTGES
Prostaglandin E synthase; Catalyzes the oxidoreduction of prostaglandin endoperoxide H2 (PGH2) to prostaglandin E2 (PGE2); Belongs to the MAPEG family (152 aa)
         
  0.902
PTGES2
Prostaglandin E synthase 2; Isomerase that catalyzes the conversion of PGH2 into the more stable prostaglandin E2 (PGE2); Glutaredoxin domain containing (377 aa)
     
 
    0.901
PTGES3
Prostaglandin E synthase 3; Cytosolic prostaglandin synthase that catalyzes the oxidoreduction of prostaglandin endoperoxide H2 (PGH2) to prostaglandin E2 (PGE2). Molecular chaperone that localizes to genomic response elements in a hormone-dependent manner and disrupts receptor-mediated transcriptional activation, by promoting disassembly of transcriptional regulatory complexes. Facilitates HIF alpha proteins hydroxylation via interaction with EGLN1/PHD2, leading to recruit EGLN1/PHD2 to the HSP90 pathway (164 aa)
         
    0.900
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]