• Version:
  • 11.0 [archived version]
STRINGSTRING
NDUFS2 NDUFS2 SUCLG1 SUCLG1 SUCLA2 SUCLA2 UQCRFS1 UQCRFS1 SDHD SDHD SDHB SDHB NDUFV1 NDUFV1 SDHA SDHA SDHC SDHC FH FH SDHAF2 SDHAF2
"SDHA" - Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SDHASuccinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial; Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily (664 aa)    
Predicted Functional Partners:
SDHB
Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial; Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q) (280 aa)
 
  0.999
SDHC
Succinate dehydrogenase cytochrome b560 subunit, mitochondrial; Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q); Belongs to the cytochrome b560 family (169 aa)
   
  0.999
SDHD
Succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial; Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q) (159 aa)
     
  0.999
SUCLG1
Succinate--CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and specificity for either ATP or GTP is provided by different beta subunits (346 aa)
   
  0.996
SUCLA2
Succinate--CoA ligase [ADP-forming] subunit beta, mitochondrial; ATP-specific succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of ATP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit (By similarity) (463 aa)
   
  0.993
NDUFV1
NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (464 aa)
   
 
  0.988
NDUFS2
NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (463 aa)
   
 
  0.987
FH
Fumarate hydratase, mitochondrial; Also acts as a tumor suppressor; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily (510 aa)
   
  0.987
UQCRFS1
Cytochrome b-c1 complex subunit Rieske, mitochondrial; Cytochrome b-c1 complex subunit Rieske, mitochondrial- Component of the mitochondrial ubiquinol-cytochrome c reductase complex dimer (complex III dimer), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. Incorporation of UQCRFS1 is the penultimate step in complex III assembly (By similarity) (274 aa)
   
 
  0.986
SDHAF2
Succinate dehydrogenase assembly factor 2, mitochondrial; Plays an essential role in the assembly of succinate dehydrogenase (SDH), an enzyme complex (also referred to as respiratory complex II) that is a component of both the tricarboxylic acid (TCA) cycle and the mitochondrial electron transport chain, and which couples the oxidation of succinate to fumarate with the reduction of ubiquinone (coenzyme Q) to ubiquinol. Required for flavinylation (covalent attachment of FAD) of the flavoprotein subunit SDHA of the SDH catalytic dimer (166 aa)
   
 
  0.986
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]