• Version:
  • 11.0 [archived version]
STRINGSTRING
KCNMB4 KCNMB4 KCNMB3 KCNMB3 KCNMA1 KCNMA1 PTS PTS ITPR1 ITPR1 PRKG2 PRKG2 MRVI1 MRVI1 VASP VASP GUCY1A2 GUCY1A2 GUCY1A3 GUCY1A3 GUCY1B3 GUCY1B3
"PRKG2" - cGMP-dependent protein kinase 2 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PRKG2cGMP-dependent protein kinase 2; Crucial regulator of intestinal secretion and bone growth (By similarity). Phosphorylates and activates CFTR on the plasma membrane. Plays a key role in intestinal secretion by regulating cGMP-dependent translocation of CFTR in jejunum (By similarity). Acts downstream of NMDAR to activate the plasma membrane accumulation of GRIA1/GLUR1 in synapse and increase synaptic plasticity. Phosphorylates GRIA1/GLUR1 at Ser-863 (By similarity). Acts as regulator of gene expression and activator of the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK [...] (762 aa)    
Predicted Functional Partners:
MRVI1
Protein MRVI1; Plays a role as NO/PRKG1-dependent regulator of IP3- induced calcium release; its phosphorylation by PRKG1 inhibits bradykinin and IP3-induced calcium release from intracellular stores. Recruits PRKG1 to the endoplasmic reticulum and may mediate the assembly of PRKG1 and ITPR1 in a macrocomplex. Involved in PRKG1 signaling cascade leading to inhibition of platelet activation and aggregation. Mediates also NO-dependent inhibition of calcium signaling in gastrointestinal smooth muscle contributing to NO-dependent relaxation (912 aa)
       
  0.986
VASP
Vasodilator-stimulated phosphoprotein; Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance, lamellipodial and filopodial dynamics, platelet activation and cell migration. VASP promotes actin filament elongation. It protects the barbed end of growing actin filaments against capping and increases the rate of actin polymerization in the presence of capping protein. VASP stimulates actin filament elongation by promoting the transfer of profilin- bound actin monomers onto the barbed end [...] (380 aa)
         
  0.954
PTS
6-pyruvoyl tetrahydrobiopterin synthase; Involved in the biosynthesis of tetrahydrobiopterin, an essential cofactor of aromatic amino acid hydroxylases. Catalyzes the transformation of 7,8-dihydroneopterin triphosphate into 6- pyruvoyl tetrahydropterin; Belongs to the PTPS family (145 aa)
       
  0.940
GUCY1B3
Guanylate cyclase soluble subunit beta-1; Mediates responses to nitric oxide (NO) by catalyzing the biosynthesis of the signaling molecule cGMP; Belongs to the adenylyl cyclase class-4/guanylyl cyclase family (619 aa)
   
  0.923
KCNMA1
Calcium-activated potassium channel subunit alpha-1; Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in t [...] (1236 aa)
     
 
  0.923
ITPR1
Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity); Inositol 1,4,5-triphosphate receptors (2743 aa)
     
  0.922
GUCY1A2
Guanylate cyclase soluble subunit alpha-2; Has guanylyl cyclase on binding to the beta-1 subunit (763 aa)
   
  0.919
GUCY1A3
Guanylate cyclase 1, soluble, alpha 3; Belongs to the adenylyl cyclase class-4/guanylyl cyclase family (690 aa)
   
  0.912
KCNMB3
Calcium-activated potassium channel subunit beta-3; Regulatory subunit of the calcium activated potassium KCNMA1 (maxiK) channel. Modulates the calcium sensitivity and gating kinetics of KCNMA1, thereby contributing to KCNMA1 channel diversity. Alters the functional properties of the current expressed by the KCNMA1 channel. Isoform 2, isoform 3 and isoform 4 partially inactivate the current of KCNBMA. Isoform 4 induces a fast and incomplete inactivation of KCNMA1 channel that is detectable only at large depolarizations. In contrast, isoform 1 does not induce detectable inactivation of [...] (279 aa)
         
  0.912
KCNMB4
Calcium-activated potassium channel subunit beta-4; Regulatory subunit of the calcium activated potassium KCNMA1 (maxiK) channel. Modulates the calcium sensitivity and gating kinetics of KCNMA1, thereby contributing to KCNMA1 channel diversity. Decreases the gating kinetics and calcium sensitivity of the KCNMA1 channel, but with fast deactivation kinetics. May decrease KCNMA1 channel openings at low calcium concentrations but increases channel openings at high calcium concentrations. Makes KCNMA1 channel resistant to 100 nM charybdotoxin (CTX) toxin concentrations; Belongs to the KCNMB [...] (210 aa)
         
  0.910
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]