• Version:
  • 11.0 [archived version]
STRINGSTRING
SESN2 SESN2 SZT2 SZT2 LAMP2 LAMP2 WDR59 WDR59 SEC13 SEC13 WDR24 WDR24 LAMP1 LAMP1 MIOS MIOS NPRL3 NPRL3 NPRL2 NPRL2 DEPDC5 DEPDC5
"WDR59" - GATOR complex protein WDR59 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
WDR59GATOR complex protein WDR59; As a component of the GATOR subcomplex GATOR2, functions within the amino acid-sensing branch of the TORC1 signaling pathway. Indirectly activates mTORC1 and the TORC1 signaling pathway through the inhibition of the GATOR1 subcomplex. It is negatively regulated by the upstream amino acid sensors SESN2 and CASTOR1; Belongs to the WD repeat WDR59 family (974 aa)    
Predicted Functional Partners:
MIOS
GATOR complex protein MIOS; As a component of the GATOR subcomplex GATOR2, functions within the amino acid-sensing branch of the TORC1 signaling pathway. Indirectly activates mTORC1 and the TORC1 signaling pathway through the inhibition of the GATOR1 subcomplex. It is negatively regulated by the upstream amino acid sensors SESN2 and CASTOR1 (875 aa)
     
  0.999
NPRL2
GATOR complex protein NPRL2; As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway; Belongs to the NPR2 family (380 aa)
     
  0.999
WDR24
GATOR complex protein WDR24; As a component of the GATOR subcomplex GATOR2, functions within the amino acid-sensing branch of the TORC1 signaling pathway. Indirectly activates mTORC1 and the TORC1 signaling pathway through the inhibition of the GATOR1 subcomplex. It is negatively regulated by the upstream amino acid sensors SESN2 and CASTOR1. In addition to its role in regulation of the TORC1 complex, promotes the acidification of lysosomes and facilitates autophagic flux (790 aa)
     
0.999
SESN2
Sestrin-2; Functions as an intracellular leucine sensor that negatively regulates the TORC1 signaling pathway through the GATOR complex. In absence of leucine, binds the GATOR subcomplex GATOR2 and prevents TORC1 signaling. Binding of leucine to SESN2 disrupts its interaction with GATOR2 thereby activating the TORC1 signaling pathway. This stress-inducible metabolic regulator also plays a role in protection against oxidative and genotoxic stresses. May negatively regulate protein translation in response to endoplasmic reticulum stress, via TORC1. May positively regulate the transcripti [...] (480 aa)
     
  0.999
SZT2
KICSTOR complex protein SZT2; As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by gluco [...] (3375 aa)
       
 
  0.997
SEC13
Protein SEC13 homolog; Functions as a component of the nuclear pore complex (NPC) and the COPII coat. At the endoplasmic reticulum, SEC13 is involved in the biogenesis of COPII-coated vesicles; Belongs to the WD repeat SEC13 family (368 aa)
     
  0.996
NPRL3
GATOR complex protein NPRL3; As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway; Belongs to the NPR3 family (569 aa)
     
  0.995
LAMP2
Lysosome-associated membrane glycoprotein 2; Plays an important role in chaperone-mediated autophagy, a process that mediates lysosomal degradation of proteins in response to various stresses and as part of the normal turnover of proteins with a long biological half-live. Functions by binding target proteins, such as GAPDH and MLLT11, and targeting them for lysosomal degradation. Plays a role in lysosomal protein degradation in response to starvation (By similarity). Required for the fusion of autophagosomes with lysosomes during autophagy. Cells that lack LAMP2 express normal levels o [...] (411 aa)
     
 
  0.994
LAMP1
Lysosome-associated membrane glycoprotein 1; Presents carbohydrate ligands to selectins. Also implicated in tumor cell metastasis; CD molecules (417 aa)
       
 
  0.993
DEPDC5
GATOR complex protein DEPDC5; As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway (1603 aa)
     
  0.992
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]