• Version:
  • 11.0 [archived version]
STRINGSTRING
CDK12 CDK12 SUPT5H SUPT5H CCNT1 CCNT1 MLLT3 MLLT3 CCNH CCNH CDK7 CDK7 CDK9 CDK9 ELL3 ELL3 HEXIM1 HEXIM1 POLR2A POLR2A AFF4 AFF4
"CCNT1" - Cyclin-T1 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CCNT1Cyclin-T1; Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which is proposed to facilitate the transition from abortive to productive elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II); Cyclins (726 aa)    
Predicted Functional Partners:
CDK9
Cyclin-dependent kinase 9; Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR, and the negative elongation factors DSIF and NELF. Regulates cytok [...] (372 aa)
     
  0.999
AFF4
AF4/FMR2 family member 4; Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression; AF4/FMR2 family (1163 aa)
     
  0.999
HEXIM1
Protein HEXIM1; Transcriptional regulator which functions as a general RNA polymerase II transcription inhibitor. In cooperation with 7SK snRNA sequesters P-TEFb in a large inactive 7SK snRNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation. May also regulate NF-kappa-B, ESR1, NR3C1 and CIITA-dependent transcriptional activity. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response a [...] (359 aa)
     
 
  0.993
CDK7
Cyclin-dependent kinase 7; Serine/threonine kinase involved in cell cycle control and in RNA polymerase II-mediated RNA transcription. Cyclin- dependent kinases (CDKs) are activated by the binding to a cyclin and mediate the progression through the cell cycle. Each different complex controls a specific transition between 2 subsequent phases in the cell cycle. Required for both activation and complex formation of CDK1/cyclin-B during G2-M transition, and for activation of CDK2/cyclins during G1-S transition (but not complex formation). CDK7 is the catalytic subunit of the CDK-activating [...] (346 aa)
     
  0.986
POLR2A
DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] (1980 aa)
     
  0.986
SUPT5H
Transcription elongation factor SPT5; Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II. DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A. DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter. Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex. DSIF and NELF promote paus [...] (1087 aa)
     
  0.986
CDK12
Cyclin-dependent kinase 12; Cyclin-dependent kinase that phosphorylates the C- terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates ’Ser-5’ in CTD repeats that are already phosphorylated at ’Ser-7’, but can also phosphorylate ’Ser-2’. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leadin [...] (1490 aa)
     
  0.985
ELL3
RNA polymerase II elongation factor ELL3; Enhancer-binding elongation factor that specifically binds enhancers in embryonic stem cells (ES cells), marks them, and is required for their future activation during stem cell specification. Does not only bind to enhancer regions of active genes, but also marks the enhancers that are in a poised or inactive state in ES cells and is required for establishing proper RNA polymerase II occupancy at developmentally regulated genes in a cohesin-dependent manner. Probably required for priming developmentally regulated genes for later recruitment of [...] (397 aa)
     
  0.983
CCNH
Cyclin-H; Regulates CDK7, the catalytic subunit of the CDK- activating kinase (CAK) enzymatic complex. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. Involved in cell cycle control and in RNA transcription by RNA polymerase II. Its expression and activity are constant throughout [...] (323 aa)
     
 
  0.976
MLLT3
Protein AF-9; Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Specifically recognizes and binds acylated histone H3, with a marked preference for histone H3 that is crotonylated. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. Recognizes and binds histone H3 crotonylated at ’Lys-9’ (H3K9cr), and with slightly lower affinity histone H3 crotonylate [...] (568 aa)
     
  0.973
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]