• Version:
  • 11.0 [archived version]
STRINGSTRING
ALDH2 ALDH2 SIRT3 SIRT3 ALDH3A2 ALDH3A2 ALDH3B1 ALDH3B1 IDH2 IDH2 ACSS2 ACSS2 PC PC SIRT1 SIRT1 ACACB ACACB ACAT1 ACAT1 ACACA ACACA
"ACSS2" - Acetyl-coenzyme A synthetase, cytoplasmic in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ACSS2Acetyl-coenzyme A synthetase, cytoplasmic; Activates acetate so that it can be used for lipid synthesis or for energy generation; Acyl-CoA synthetase family (714 aa)    
Predicted Functional Partners:
ACACA
Acetyl-CoA carboxylase 1; Catalyzes the rate-limiting reaction in the biogenesis of long-chain fatty acids. Carries out three functions- biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase (2383 aa)
   
  0.969
SIRT3
NAD-dependent protein deacetylase sirtuin-3, mitochondrial; NAD-dependent protein deacetylase. Activates or deactivates mitochondrial target proteins by deacetylating key lysine residues. Known targets include ACSS1, IDH, GDH, SOD2, PDHA1, LCAD, SDHA and the ATP synthase subunit ATP5O. Contributes to the regulation of the cellular energy metabolism. Important for regulating tissue-specific ATP levels; Sirtuins (399 aa)
     
 
  0.963
ACACB
Acetyl-CoA carboxylase 2; Catalyzes the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. Carries out three functions- biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase. Involved in inhibition of fatty acid and glucose oxidation and enhancement of fat storage (By similarity). May play a role in regulation of mitochondrial fatty acid oxidation through malonyl- CoA-dependent inhibition of carnitine palmitoyltransferase 1 (By similarity) (2458 aa)
   
  0.959
SIRT1
NAD-dependent protein deacetylase sirtuin-1; NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metobolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expres [...] (747 aa)
       
  0.955
IDH2
Isocitrate dehydrogenase [NADP], mitochondrial; Plays a role in intermediary metabolism and energy production. It may tightly associate or interact with the pyruvate dehydrogenase complex; Belongs to the isocitrate and isopropylmalate dehydrogenases family (452 aa)
     
 
  0.948
ALDH2
Aldehyde dehydrogenase, mitochondrial; Aldehyde dehydrogenase 2 family member; Belongs to the aldehyde dehydrogenase family (517 aa)
   
  0.941
ACAT1
Acetyl-CoA acetyltransferase, mitochondrial; Plays a major role in ketone body metabolism (427 aa)
   
 
  0.939
ALDH3A2
Fatty aldehyde dehydrogenase; Catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acids. Active on a variety of saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length. Responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid (508 aa)
   
  0.939
PC
Pyruvate carboxylase, mitochondrial; Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. Catalyzes in a tissue specific manner, the initial reactions of glucose (liver, kidney) and lipid (adipose tissue, liver, brain) synthesis from pyruvate (1178 aa)
     
  0.938
ALDH3B1
Aldehyde dehydrogenase family 3 member B1; Oxidizes medium and long chain saturated and unsaturated aldehydes. Metabolizes also benzaldehyde. Low activity towards acetaldehyde and 3,4-dihydroxyphenylacetaldehyde. May not metabolize short chain aldehydes. May use both NADP(+) and NAD(+) as cofactors. May have a protective role against the cytotoxicity induced by lipid peroxidation (468 aa)
   
  0.938
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]