• Version:
  • 11.0 [archived version]
STRINGSTRING
TP53BP1 TP53BP1 NUDT21 NUDT21 ZC3H10 ZC3H10 ZC3H4 ZC3H4 CSTF3 CSTF3 CSTF1 CSTF1 FIP1L1 FIP1L1 CLP1 CLP1 CPSF2 CPSF2 WDR82 WDR82 DIDO1 DIDO1
"ZC3H4" - Zinc finger CCCH domain-containing protein 4 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ZC3H4Zinc finger CCCH domain-containing protein 4; Armadillo-like helical domain containing (1303 aa)    
Predicted Functional Partners:
CPSF2
Cleavage and polyadenylation specificity factor subunit 2; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing; Belongs to the metallo-beta-lactamase superfamily. RNA-metabolizing metallo-beta-lactamase-like family. CPSF2/YSH1 subfamily (782 aa)
     
 
  0.850
FIP1L1
Pre-mRNA 3’-end-processing factor FIP1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre- mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex (594 aa)
     
 
  0.831
CSTF3
Cleavage stimulation factor subunit 3; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs (717 aa)
     
 
  0.830
CSTF1
Cleavage stimulation factor subunit 1; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. May be responsible for the interaction of CSTF with other factors to form a stable complex on the pre-mRNA (431 aa)
     
 
  0.812
CLP1
Polyribonucleotide 5’-hydroxyl-kinase Clp1; Polynucleotide kinase that can phosphorylate the 5’- hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double-stranded DNA (dsDNA) and double-stranded DNA-RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA-RNA hybrid is phosphorylated more efficiently than the DNA component. Plays a key role in both tRNA splicing and mRNA 3’-end formation. Component of the tRNA splicing endonuclease complex- phosphorylates the 5’-terminus of the tRNA 3’-exon during tRNA splicing; this ph [...] (425 aa)
     
 
  0.719
WDR82
WD repeat-containing protein 82; Regulatory component of the SET1 complex implicated in the tethering of this complex to transcriptional start sites of active genes. Facilitates histone H3 ’Lys-4’ methylation via recruitment of the SETD1A or SETD1B to the ’Ser-5’ phosphorylated C-terminal domain (CTD) of RNA polymerase II large subunit (POLR2A). Component of PTW/PP1 phosphatase complex, which plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase; WD repeat domain containing (313 aa)
     
 
  0.696
TP53BP1
TP53-binding protein 1; Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis. Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1. In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs si [...] (1977 aa)
     
 
  0.694
ZC3H10
Zinc finger CCCH domain-containing protein 10; Specific regulator of miRNA biogenesis. Binds, via the C3H1-type zinc finger domains, to the binding motif 5’-GCAGCGC-3’ on microRNA pri-MIR143 and negatively regulates the processing to mature microRNA; Zinc fingers CCCH-type (434 aa)
           
  0.683
NUDT21
Cleavage and polyadenylation specificity factor subunit 5; Component of the cleavage factor Im (CFIm) complex that plays a key role in pre-mRNA 3’-processing. Involved in association with CPSF6 or CPSF7 in pre-MRNA 3’-end poly(A) site cleavage and poly(A) addition. NUDT21/CPSF5 binds to cleavage and polyadenylation RNA substrates. The homodimer mediates simultaneous sequence-specific recognition of two 5’-UGUA-3’ elements within the pre-mRNA. Binds to, but does not hydrolyze mono- and di-adenosine nucleotides. May have a role in mRNA export; Nudix hydrolase family (227 aa)
     
 
  0.682
DIDO1
Death-inducer obliterator 1; Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development; PHD finger proteins (2240 aa)
     
   
  0.674
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]