• Version:
  • 11.0 [archived version]
STRINGSTRING
ORC2 ORC2 ORC4 ORC4 MCM7 MCM7 ORC1 ORC1 CDC45 CDC45 MCM3 MCM3 MCM5 MCM5 CDC6 CDC6 ORC5 ORC5 MCM4 MCM4 ORC3 ORC3
"ORC2" - Origin recognition complex subunit 2 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ORC2Origin recognition complex subunit 2; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre- replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K20me3 and H4K27me3. Stabilizes LRWD1, by protecting it from ubiquitin- mediated proteasomal degradation. Also stabilizes ORC3; Belongs to the ORC2 family (577 aa)    
Predicted Functional Partners:
ORC3
Origin recognition complex subunit 3; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre- replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3 (712 aa)
     
  0.999
ORC1
Origin recognition complex subunit 1; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication; Belongs to the ORC1 family (861 aa)
     
  0.999
ORC5
Origin recognition complex subunit 5; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre- replication complex necessary to initiate DNA replication; Belongs to the ORC5 family (435 aa)
     
  0.999
ORC4
Origin recognition complex subunit 4; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre- replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3; Belongs to the ORC4 family (436 aa)
     
  0.999
CDC6
Cell division control protein 6 homolog; Involved in the initiation of DNA replication. Also participates in checkpoint controls that ensure DNA replication is completed before mitosis is initiated (560 aa)
     
  0.999
MCM5
DNA replication licensing factor MCM5; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (734 aa)
     
  0.999
MCM7
DNA replication licensing factor MCM7; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (719 aa)
     
  0.999
CDC45
Cell division control protein 45 homolog; Required for initiation of chromosomal DNA replication (598 aa)
     
  0.999
MCM3
DNA replication licensing factor MCM3; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (853 aa)
     
  0.999
MCM4
DNA replication licensing factor MCM4; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (863 aa)
     
  0.999
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]