• Version:
  • 11.0 [archived version]
STRINGSTRING
TCF12 TCF12 MEF2D MEF2D MAPK14 MAPK14 MEF2C MEF2C TCF4 TCF4 MYF5 MYF5 MEF2A MEF2A MYOD1 MYOD1 MYF6 MYF6 TCF3 TCF3 MYOG MYOG
"MYF6" - Myogenic factor 6 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MYF6Myogenic factor 6; Involved in muscle differentiation (myogenic factor). Induces fibroblasts to differentiate into myoblasts. Probable sequence specific DNA-binding protein; Basic helix-loop-helix proteins (242 aa)    
Predicted Functional Partners:
TCF4
Transcription factor 4; Transcription factor that binds to the immunoglobulin enchancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5’-CANNTG-3’). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5’-ACANNTGT-3’ or 5’-CCANNTGG-3’; Basic helix-loop-helix proteins (773 aa)
       
  0.981
TCF12
Transcription factor 12; Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5’-CANNTG-3’); Basic helix-loop-helix proteins (706 aa)
       
  0.979
TCF3
Transcription factor E2-alpha; Transcriptional regulator. Involved in the initiation of neuronal differentiation. Heterodimers between TCF3 and tissue- specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation. Dimers bind DNA on E- box motifs- 5’-CANNTG-3’. Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer. Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (654 aa)
       
  0.979
MEF2A
Myocyte-specific enhancer factor 2A; Transcriptional activator which binds specifically to the MEF2 element, 5’-YTA[AT](4)TAR-3’, found in numerous muscle- specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylat [...] (499 aa)
     
  0.961
MEF2D
Myocyte-specific enhancer factor 2D; Transcriptional activator which binds specifically to the MEF2 element, 5’-YTA[AT](4)TAR-3’, found in numerous muscle- specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity) (521 aa)
     
  0.955
MEF2C
Myocyte-specific enhancer factor 2C; Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle- specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes a [...] (483 aa)
     
  0.953
MYF5
Myogenic factor 5; Acts as a transcriptional activator that promotes transcription of muscle-specific target genes and plays a role in muscle differentiation. Together with MYOG and MYOD1, co-occupies muscle-specific gene promoter core region during myogenesis. Induces fibroblasts to differentiate into myoblasts. Probable sequence specific DNA-binding protein; Basic helix-loop-helix proteins (255 aa)
     
 
0.937
MYOD1
Myoblast determination protein 1; Acts as a transcriptional activator that promotes transcription of muscle-specific target genes and plays a role in muscle differentiation. Together with MYF5 and MYOG, co-occupies muscle-specific gene promoter core region during myogenesis. Induces fibroblasts to differentiate into myoblasts. Interacts with and is inhibited by the twist protein. This interaction probably involves the basic domains of both proteins (By similarity) (320 aa)
     
 
0.933
MAPK14
Mitogen-activated protein kinase 14; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are a [...] (360 aa)
       
  0.923
MYOG
Myogenin; Acts as a transcriptional activator that promotes transcription of muscle-specific target genes and plays a role in muscle differentiation, cell cycle exit and muscle atrophy. Essential for the development of functional embryonic skeletal fiber muscle differentiation. However is dispensable for postnatal skeletal muscle growth; phosphorylation by CAMK2G inhibits its transcriptional activity in respons to muscle activity. Required for the recruitment of the FACT complex to muscle-specific promoter regions, thus promoting gene expression initiation. During terminal myoblast dif [...] (224 aa)
     
 
0.920
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]