• Version:
  • 11.0 [archived version]
STRINGSTRING
ATP5B ATP5B ATP5F1 ATP5F1 VDAC2 VDAC2 ATP5C1 ATP5C1 TUFM TUFM ATP5A1 ATP5A1 TOMM22 TOMM22 SLC25A3 SLC25A3 CYC1 CYC1 UQCRC2 UQCRC2 UQCRFS1 UQCRFS1
"SLC25A3" - Phosphate carrier protein, mitochondrial in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SLC25A3Phosphate carrier protein, mitochondrial; Transport of phosphate groups from the cytosol to the mitochondrial matrix. Phosphate is cotransported with H(+). May play a role regulation of the mitochondrial permeability transition pore (mPTP); Solute carriers (362 aa)    
Predicted Functional Partners:
ATP5B
ATP synthase subunit beta, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the c [...] (529 aa)
     
   
  0.974
ATP5A1
ATP synthase subunit alpha, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (553 aa)
     
   
  0.963
VDAC2
Voltage-dependent anion-selective channel protein 2; Forms a channel through the mitochondrial outer membrane that allows diffusion of small hydrophilic molecules. The channel adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV. The open state has a weak anion selectivity whereas the closed state is cation- selective; Belongs to the eukaryotic mitochondrial porin family (309 aa)
     
 
  0.934
CYC1
Cytochrome c1, heme protein, mitochondrial; This is the heme-containing component of the cytochrome b-c1 complex, which accepts electrons from Rieske protein and transfers electrons to cytochrome c in the mitochondrial respiratory chain; Apoptosome (325 aa)
     
      0.927
ATP5F1
ATP synthase F(0) complex subunit B1, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechani [...] (256 aa)
     
 
  0.916
UQCRFS1
Cytochrome b-c1 complex subunit Rieske, mitochondrial; Cytochrome b-c1 complex subunit Rieske, mitochondrial- Component of the mitochondrial ubiquinol-cytochrome c reductase complex dimer (complex III dimer), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. Incorporation of UQCRFS1 is the penultimate step in complex III assembly (By similarity) (274 aa)
     
   
  0.915
ATP5C1
ATP synthase subunit gamma, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (298 aa)
     
 
  0.902
TOMM22
Mitochondrial import receptor subunit TOM22 homolog; Central receptor component of the translocase of the outer membrane of mitochondria (TOM complex) responsible for the recognition and translocation of cytosolically synthesized mitochondrial preproteins. Together with the peripheral receptor TOM20 functions as the transit peptide receptor and facilitates the movement of preproteins into the translocation pore; Belongs to the Tom22 family (142 aa)
     
 
  0.891
UQCRC2
Cytochrome b-c1 complex subunit 2, mitochondrial; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. The core protein 2 is required for the assembly of the complex; M16 metallopeptidases (453 aa)
     
 
  0.886
TUFM
Elongation factor Tu, mitochondrial; This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-Tu/EF-1A subfamily (455 aa)
     
 
  0.883
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]